Section 6.1: THE GREATEST COMMON FACTOR AND FACTORING BY GROUPING

When you are done with your homework you should be able to ...

- π Find the greatest common factor (GCF)
- $\pi~$ Factor out the GCF of a polynomial
- π Factor by grouping

WARM-UP:

1. Multiply:

 $x^2\left(7x^4-8\right)$

2. Divide:

$$\frac{16x^4-8x^2}{4x^2}$$

FACTORING A ______ CONTAINING THE SUM OF ______ MEANS FINDING AN ______ EXPRESSION THAT IS A ______.

			6.1
FACTORING OUT	THE GREATEST CON	MON FACTOR (G	CF)
We use the	pro	perty to	a monor
and a	of	or more _	
When we	, we	this	process, expressi
the	as a	·	
MULTIPLIC	ATION	FACT	ORING
Tu ou i	nach	low the first stop	ia ta lack fan tha
In any	prob	lem, the first step	is to look for the The
In anyis a	prob 	lem, the first step of the	is to look for the The degre
In any is a that	prob neach	lem, the first step of the of the	is to look for the The degre
In any is a that The	prob aneach part of the	lem, the first step of the of the of the	is to look for the The degre ays contains the
In any is a is a that The	prob aneach each	lem, the first step of the of the of the alwa	is to look for the The degre ays contains the that
In any is a that The appears in	prob each each part of the	lem, the first step of the of the alwa _ of a	is to look for the The degre ays contains the that
In any is a that is a The appears in Example 1: Find th	prob each each part of the terms of the e greatest common fact	lem, the first step of the of the of a for of each list of n	is to look for the The degre ays contains the that nonomials:
In any is a that is a that The appears in Example 1: Find th a. 5 and 15x	prob 	lem, the first step of the of the of the of a or of each list of n	is to look for the The degre ays contains the that nonomials:
In any is a that is a that The appears in Example 1: Find th a. 5 and 15x b = 3x ⁴ and 6x ³	prob each each part of the terms of the e greatest common fact	lem, the first step of the of the of the alwa _ of a or of each list of n	is to look for the The degre ays contains the honomials:
In any is a that is a that The Example 1: Find th a. 5 and 15x b. $-3x^4$ and $6x^3$	prob each each part of the terms of the e greatest common fact	lem, the first step of the of the alwa of a for of each list of n	is to look for the The degre ays contains the honomials:

1. Determine the		factor of
terms in the		
2. Express each	_ as the	of the
and its other		
3. Use the		_ to factor out the

Example 2: Factor each polynomial using the GCF:

- **a**. 9*x*+9
- b. 32x 24
- c. $18x^3y^2 12x^3y 24x^2y$

d. 7(x+1)+21x(x+1)

FACTORING BY GROUPING

1.	terms that have a	
	factor. There will usually be groups. S	ometimes the terms must be
2		monomial
۷.	out the from each	
3.	out the remaining common _ (if one exists).	factor
Exan	nple 3: Factor by grouping:	

a. $x^2 + 3x + 5x + 15$ **c.** xy - 6x + 2y + 12

b. $x^3 - 3x^2 + 4x - 12$

d. $10x^2 - 12xy + 35xy - 42y^2$

Example 4: Factor each polynomial:

a.
$$x^3 - 5 + 2x^3y - 10y$$

c. $8x^5(x+2)-10x^3(x+2)-2x^2(x+2)$

b. $7x^5 - 7x^4 + x^3 - x^2 + 3x - 3$

d. $12x^2 - 25$

APPLICATION

An explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The polynomial $72x-16x^2$ describes the height of the debris above the ground, in feet, after x seconds.

a. Find the height of the debris after 4 seconds.

b. Factor the polynomial.

c. Use the factored form of the polynomial in part (b) to find the height of the debris after 4 seconds. Do you get the same answer as you did in part (a)? If so, does this prove that your factorization is correct?