Section 5.6: LONG DIVISION OF POLYNOMIALS AND SYNTHETIC DIVISION When you are done with your homework you should be able to...
π Use long division to divide by a polynomial containing more than one term
π Divide polynomials using synthetic division

WARM-UP:

1. Divide using long division:
$5 6 \longdiv { 1 2 3 4 5 6 7 }$
2. Simplify:

$$
\frac{5 x^{5}-8 x^{3}+x^{2}}{2 x^{2}}
$$

STEPS FOR DIVIDING A POLYNOMIAL BY A BINOMIAL

1. \qquad the terms of \qquad the \qquad and
the \qquad in \qquad powers of the variable.
2. \qquad the \qquad term in the \qquad by
the \qquad term in the \qquad . The result is the
\qquad term of the \qquad -
3. \qquad every term in the \qquad by the
\qquad term in the \qquad Write the resulting
\square
4. \qquad the \qquad from the \qquad .
5. \qquad down the next term in the \qquad
dividend and write it next to the \qquad to form a new
\qquad -
6. Use this new expression as the \qquad and repeat the process until the \qquad can no longer be
\qquad . This will occur when the \qquad of the is \qquad than the of
the .

Example 1: Divide.

a. $\frac{x^{2}+7 x+10}{x+5}$
b. $\frac{2 y^{2}-13 y+21}{y-3}$
c. $\frac{x^{3}+2 x^{2}-3}{x-2}$
d. $\left(8 y^{3}+y^{4}+16+32 y+24 y^{2}\right) \div(y+2)$

DIVIDING POLYNOMIALS USING SYNTHETIC DIVISION

We can use \qquad division to divide \qquad if the
\qquad is of the form \qquad . This method provides a more quickly than \qquad division.

STEPS FOR SYNTHETIC DIVISION

1. Arrange the \qquad in \qquad powers, with
a \qquad coefficient for any \qquad term.
2. Write \qquad for the \qquad , \qquad To the \qquad
write the \qquad of the \qquad .
3. Write the \qquad
\qquad of the
\qquad on the \qquad row.
4. \qquad times the \qquad just written on the
\qquad row. Write the \qquad in the next
\qquad in the \qquad row.
5. \qquad the values in this new column, writing the \qquad in the
\qquad row.
6. Repeat this series of \qquad and \qquad
until all \qquad are filled in.
7. Use the numbers in the last row to write the plus the

Example 2: Divide using synthetic division.
a. $\left(x^{2}+x-2\right) \div(x-1)$
b. $\left(x^{2}-6 x-6 x^{3}+x^{4}\right) \div(6+x)$
c. $\frac{x^{7}-128}{x-2}$
d. $\left(y^{5}-2 y^{4}-y^{3}+3 y^{2}-y+1\right) \div(y-2)$

APPLICATION

You just signed a contract for a new job. The salary for the first year is $\$ 30,000$ and there is to be a percent increase in your salary each year. The algebraic expression

$$
\frac{30000 x^{n}-30000}{x-1}
$$

describes your total salary over n years, where x is the sum of 1 and the yearly percent increase, expressed as a decimal.
a. Use the given expression and write a quotient of polynomials that describes your total salary over four years.
b. Simplify the expression in part (a) by performing the division.
c. Suppose you are to receive an increase of 8% per year. Thus, x is the sum of 1 and 0.08 , or 1.08 . Substitute 1.08 for x in the expression in part (a) as well as the simplified expression in part (b). Evaluate each expression. What is your total salary over the four-year period?

