Section 5.6: LONG DIVISION OF POLYNOMIALS AND SYNTHETIC DIVISION

When you are done with your homework you should be able to ...

- $\pi~$ Use long division to divide by a polynomial containing more than one term
- $\pi~$ Divide polynomials using synthetic division

WARM-UP:

1. Divide using long division:

56)1234567

2. Simplify:

$$\frac{5x^{5} - 8x^{3} + x^{2}}{2x^{2}}$$

MATH 830/GRACEY

STEP	S FOR DIVIDING A	POLYNOMIAL	BY A BINOMIAL	
1.		the terms of	the	and
	the	in	powers of	of the variable.
2.		_ the	term in the	by
	the	_term in the	The	e result is the
	te	erm of the	·	
3.	e	very term in the <u>_</u>		by the
	term in the		Write the resulting	
	terms lined up	beneath the	with _	
4.	the		_ from the	
5.		_down the next t	erm in the	
	dividend and write it	next to the	to t	form a new
6.	Use this new express	 sion as the	and	repeat the
	process until the		can no longer b	e
		This will occur	when the	of the
		is	than the	of
	the			

5.6

Example 1: Divide.

a.
$$\frac{x^2 + 7x + 10}{x + 5}$$

b.
$$\frac{2y^2 - 13y + 21}{y - 3}$$

MATH 830/GRACEY

c.
$$\frac{x^3 + 2x^2 - 3}{x - 2}$$

d. $(8y^3 + y^4 + 16 + 32y + 24y^2) \div (y+2)$

5.6

MATH 830/GRACEY	5.6						
DIVIDING POLYNOMIALS USING SYNTHETIC DIVISION							
We can use division to divide	if the						
is of the form This	method provides a						
more quickly than divis	ion.						
STEPS FOR SYNTHETIC DIVISION							
1. Arrange the in	powers, with						
a coefficient for any term.							
2. Write for the, 7	Γο the,						
write the of the							
3. Write the o	f the						
on the row.							
4 times the	just written on the						
row. Write the in	the next						
in the row.							
5 the values in this new column, writing the	in the						
row.							
6. Repeat this series of and							
until all are filled in.							

N	IATH 830/GRACEY	5.6			
	7. Use the numbers in the last row to write the	plus the			
	the	The			
	of the term of the quot	ient will be			
	less than the of the first te	the of the first term of the			
	The final value in this row is the				

Example 2: Divide using synthetic division.

a. $(x^2 + x - 2) \div (x - 1)$

b.
$$(x^2 - 6x - 6x^3 + x^4) \div (6 + x)$$

MATH 830/GRACEY

c.
$$\frac{x^7 - 128}{x - 2}$$

d. $(y^5 - 2y^4 - y^3 + 3y^2 - y + 1) \div (y - 2)$

APPLICATION

You just signed a contract for a new job. The salary for the first year is \$30,000 and there is to be a percent increase in your salary each year. The algebraic expression

$$\frac{30000x^n - 30000}{x - 1}$$

describes your total salary over n years, where x is the sum of 1 and the yearly percent increase, expressed as a decimal.

- a. Use the given expression and write a quotient of polynomials that describes your total salary over four years.
- b. Simplify the expression in part (a) by performing the division.

c. Suppose you are to receive an increase of 8% per year. Thus, x is the sum of 1 and 0.08, or 1.08. Substitute 1.08 for x in the expression in part (a) as well as the simplified expression in part (b). Evaluate each expression. What is your total salary over the four-year period?