
When you are done with your home work you should be able to...
π Understand the vocabulary used to describe polynomials
π Add polynomials
π Subtract polynomials
π Graph equations defined by polynomials of degree 2
$\mathcal{W} \mathcal{A R M}$-UP:
Simplify:

$$
-6 x+5 y-2 x^{2}-2 y+x^{2}
$$

$\mathcal{D E S}$ CRIBING PO LyN $\mathcal{N M I A L S}$
\mathcal{A} _-_-_-_-_-_-_-_-_-_-_ is a \qquad term or the _-_-_-_-_-_-_ of two
or more \qquad containing \qquad with \qquad number \qquad . It is customary to write the \qquad in the order of \qquad powers of the \qquad . This is the
\qquad
\qquad . We begin this chapter 6y limiting discussion to polynomials containing \qquad variable. Each term of sucta \qquad in \qquad is of the form \qquad . The
of is \qquad .
$\mathcal{T H E} \mathcal{D E} \mathcal{G} \mathcal{R E E} O \mathcal{F} a x^{n}$

Example 1: Identify the terms of the polynomial and the degree of each term.
a. $-4 x^{5}-13 x^{3}+5$
6. $-x^{2}+3 x-7$

A polynomial is \qquad when it contains no \qquad symbols
and no \qquad . A simplified polynomial that has
exactly \qquad term is called a \qquad . A simplified polynomial that has \qquad terms is called a \qquad and a simplified polynomial with \qquad terms is called a \qquad .

Simplifie d polynomials with \qquad or more \qquad have no special names. The \qquad of a \qquad is the
\qquad degree of the of a

Example 2: Find the degree of the polynomial.
a. $5 x^{2}-x^{8}+16 x^{4}$
6. -2
$\mathcal{A D D I N G} \operatorname{POLYN} \mathcal{N} O \operatorname{MI} \mathcal{A} S$
Recall that \qquad are terms containing the
same \qquad to the \qquad powers. \qquad are added
by \qquad .

Example 3: Add the polynomials.
a. $(8 x-5)+(-13 x+9)$
6. $\left(7 y^{3}+5 y-1\right)+\left(2 y^{2}-6 y+3\right)$
c. $\left(\frac{2}{5} x^{4}+\frac{2}{3} x^{3}+\frac{5}{8} x^{2}+7\right)+\left(-\frac{4}{5} x^{4}+\frac{1}{3} x^{3}-\frac{1}{4} x^{2}-7\right)$
d.

$$
\begin{array}{r}
7 x^{2}-5 x-6 \\
-9 x^{2}+4 x+6 \\
\hline
\end{array}
$$

S UBTRACTING PO LYNOMIALS

the number being \qquad .Subtraction of polynomials also involves
\qquad . If the sum of two polynomials is \qquad , the
polynomials are \qquad of each other.

Example 4: Find the opposite of the polynomial.
a. $x+8$
6. $-12 x^{3}-x+1$

SUBTRACTING PO LYNOMIALS

```
To
```



```
        two polynomials,
```

\qquad

``` the first polynomial and the of the second polynomial
```

Example 5: Subtract the polynomials.
a. $(x-2)-(7 x+9)$
6. $\left(3 x^{2}-2 x\right)-\left(5 x^{2}-6 x\right)$
c. $\left(\frac{3}{8} x^{2}-\frac{1}{3} x-\frac{1}{4}\right)-\left(-\frac{1}{8} x^{2}+\frac{1}{2} x-\frac{1}{4}\right)$
d.

$$
\begin{array}{r}
3 x^{5}-5 x^{3}+6 \\
-\left(7 x^{5}+4 x^{3}-2\right) \\
\hline
\end{array}
$$

Grapts of equations defined by
of degree \qquad have a quality. We can obtain the ir graphs, shaped like
bowls, using the \qquad -
method for grapfing an equation in two variables.

Example 3: Graph the following equations by plotting points.
a. $y=x^{2}-1$

6. $y=9-x^{2}$

x	$y=9-x^{2}$	(x, y)

