When you are done with your 4.5 homework you should be able to...
π Verify the solution of a system of linear equations in three variables
π Solve systems of linear equations in three variables
π Identify inconsistent and dependent systems
π Solve problems using systems in three variables

WARM-UP:

Solve the following system of linear equations. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

$$
\begin{aligned}
& 5 x-3 y=1 \\
& y=3 x-7
\end{aligned}
$$

SYSTEMS OF LINEAR EQUATIONS IN THREE VARIABLES AND THEIR SOLUTIONS

Any equation of the form \qquad where \qquad , \qquad , \qquad _, and \qquad are real numbers such that \qquad and \qquad are not \qquad zero, is a \qquad
\qquad in \qquad .
The graph of this linear equation in three variables is a \qquad in
\qquad
\qquad of \qquad linear eqautions in \qquad variables is geometrically
\qquad of \qquad (assuming
that there is one) of three \qquad in space. A \qquad of a
system of \qquad equations in \qquad variables is an of real numbers that \qquad
ALL equations in the \qquad . The \qquad of the system is the \qquad of \qquad its \qquad .

One Solution of three variable systems

If the three planes intersect as pictured below then the three variable system has 1 point in common, and a single solution represented by the black point below.

No Solution of three variable systems

Below is a picture of three planes that have no solution. There is no single point at which all three planes intersect, therefore this system has no solution.

The other common example of systems of three variables equations that have no solution is pictured below. In the case below, each plane intersects the other two planes. However, there is no single point at which all three planes meet. Therefore, the system of 3 variable equations below has no solution.

Infinite Solutions of three variable systems

If the three planes intersect as pictured below then the three variable system has a line of intersection and therefore an infinite number of solutions.

SOLVING LINEAR SYSTEMS IN THREE VARIABLES BY ELIMINATING VARIABLES

1. Reduce the \qquad to \qquad equations in \qquad
variables. This is usually accomplished by taking \qquad
\qquad of equations and using the
\qquad method to \qquad the SAME VARIABLE from BOTH \qquad .
2. \qquad the resulting \qquad of two equations. The
result is an equation in \qquad variable that gives the \qquad of
that variable.
3. \qquad - \qquad the \qquad of the variable found
in step 2 into either of the equations in \qquad variables to find the value of the \qquad variable.
4. Use the values of the \qquad variables from steps \qquad and \qquad to
find the value of the \qquad variable by \qquad -
\qquad into one of the \qquad equations.
5. \qquad the proposed solution in \qquad of the

Example 1: Determine if the given ordered triple is a solution of the system.
a.

$$
\begin{gathered}
(5,-3,-2) \\
x+y+z=0 \\
x+2 y-3 z=5 \\
3 x+4 y+2 z=-1
\end{gathered}
$$

b.

$$
\begin{aligned}
& (2,-1,3) \\
& x+y+z=4 \\
& x-2 y-z=1 \\
& 2 x-y-z=-1
\end{aligned}
$$

Example 2: Solve each system. If there is no solution or if there are infinitely many solutions and a system's equations are dependent, so state. Use set notation to express solution sets.
a.

$$
\begin{aligned}
2 x+y-2 z & =-1 \\
3 x-3 y-z & =5 \\
x-2 y+3 z & =6
\end{aligned}
$$

b.
$2 x+4 y+5 z=8$

$$
\begin{aligned}
x-2 y+3 z & =-6 \\
2 x-4 y+6 z & =8
\end{aligned}
$$

c.

$$
\begin{array}{r}
x+2 y+z=4 \\
3 x-4 y+z=4 \\
6 x-8 y+2 z=8
\end{array}
$$

