When you are done with your 4.3 homework you should be able to...
π Solve linear systems by the addition method
π Use the addition method to identify systems with no solution or infinitely many solutions
π Determine the most efficient method for solving a linear system WARM-UP:

1. Solve the following system of linear equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

$$
\begin{aligned}
& y=\frac{7}{2} x-3 \\
& y=-4 x+2
\end{aligned}
$$

ELIMINATING A VARIABLE USING THE ADDITION METHOD

The \qquad method is most useful if one of the equations has an
variable. A third method for solving a linear system is the method. The addition method \qquad a variable by \qquad the equations. When we use the addition method, we want to obtain two equations whose \qquad is an equation containing only \qquad variable. The key step is to obtain, for one of the variables,

Steps for Solving a System of Two Linear Equations Containing Two Variables by Addition

1. If necessary, \qquad both equations in the form
2. If necessary, \qquad either equation or both equations by appropriate nonzero numbers so that the \qquad of the x-coefficients
or y-coefficients is \qquad .
3. \qquad the equations in step 2. The \qquad is an \qquad
in \qquad variable.
4. \qquad the equation in one variable.
5. \qquad - \qquad the value obtained in step 4 into either of
the \qquad equations and \qquad for the other variable.
6. \qquad the solution in \qquad of the original equations.

Example 1: Solve the following systems of linear equations by the addition method. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use set notation to express solution sets.
a.

$$
\begin{aligned}
& x+y=6 \\
& x-y=-2
\end{aligned}
$$

b.

$$
\begin{aligned}
& 3 x-y=11 \\
& 2 x+5 y=13
\end{aligned}
$$

COMPARING SOLUTION METHODS

METHOD	ADVANTAGES	DISADVANTAGES
GRAPHING	You can \qquad the \qquad .	If the solutions do not involve \qquad or are too \qquad or \qquad to be \qquad on the graph, it's impossible to tell exactly what the \qquad are.
SUBSTITUTION	Gives \qquad solutions. Easy to use if a \qquad is on \qquad side by itself.	Solutions cannot be \qquad Can introduce extensive work with \qquad when no variable has a coefficient of \qquad or
ADDITION	Gives \qquad solutions. Easy to use!	Solutions cannot be \qquad

Example 2: Solve the following systems of linear equations by any method. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use set notation to express solution sets.
a.

$$
\begin{aligned}
& x+y=6 \\
& x-y=-2
\end{aligned}
$$

b.

$$
\begin{aligned}
& 3 x-y=11 \\
& 2 x+5 y=13
\end{aligned}
$$

c.
$4 x-2 y=2$
$2 x-y=1$
d.

$$
\begin{aligned}
& 3 x=4 y+1 \\
& 4 x+3 y=1
\end{aligned}
$$

e.

$$
\begin{aligned}
& 2 x+4 y=5 \\
& 3 x+6 y=6
\end{aligned}
$$

