Section 4.1: SOLVING SYSTEMS OF LINEAR EQUATIONS BY GRAPHING

When you are done with your homework you should be able to ...

- $\pi\,$ Decide whether an ordered pair is a solution of a linear system
- π Solve systems of linear equations by graphing
- π Use graphing to identify systems with no solution or infinitely many solutions
- π Use graphs of linear systems to solve problems

WARM-UP:

1. Determine if the given number or ordered pair is a solution to the given equation.

a.
$$5x+3=21; \frac{18}{5}$$
 b. $-x+2y=0; (4,1)$

2. Graph the line which passes through the points (0,1) and (-5,3).

MATH 830/GRACEY			4.1	
SYSTEMS OF LINEAR EQUATIONS AND THEIR SOLUTIONS				
We have seen that all	ii	n the form	are	
straight	when graphed	such equations	are called a	
	of		or a	
		Α	_ to a system	
of two	equations in two _	is an		
	that			
equations in the				
Example 1: Determine whether the given ordered pair is a solution of the system.				

a. (-2,-5) b. 6x-2y=-2 (10,7) 3x+y=-11 6x-5y=254x+15y=13

The	of a	of two linea	r equations in
	_ variables can be found by _		of the
	in the	rectangular _	
system.	For a system with	solution, the	of
the poin	it of	give the	solution.

STEPS FOR SOLVING SYSTEMS OF TWO LINEAR EQUATIONS IN TWO VARIABLES, X AND Y, BY GRAPHING

1.	Graph the first		
2.		_ the second equation on the _	set of
	·		
3.	If the	representing the	graphs
	at a	, determine the	of this point of
	intersection. The _		_ is the
	of the		
4.		the	_ in equations.

Example 2: Use the graph below to find the solution of the system of linear equations.

MATH 830/GRACEY

x + y =

x - y =

a.

Example 3: Solve each system by graphing. Use set notation to express solution sets.

$$\begin{array}{c} 2\\ 4\\ \end{array}$$

b. y = 3x - 4 y = -2x + 1

$$x + y = 6$$
$$y = -3$$

MATH 830/GRACEY

LINEAR SYSTEMS HAVING NO SOLUTION OR INFINITELY MANY SOLUTIONS				
We have seen that a	of linear equations in			
variables represents a	of The lines either			
at po	int, are, or are			
Thus, there a	are possibilities for			
he of solutions to a system of two linear equations.				
THE NUMBER OF SOLUTIONS TO A SYSTEM OF TWO LINEAR EQUATIONS				
NUMBER OF SOLUTIONS	WHAT THIS MEANS GRAPHICALLY			
Exactly ordered pair solution.	The two lines at point. This is a system.			
Solution	The two lines are This is an system.			
many solutions	The two lines are This is a system with equations.			

MATH 830/GRACEY

Example 4: Solve each system by graphing. If there is no solution or infinitely many solutions, so state. Use set notation to express solution sets.

a. x + y = 42x + 2y = 8

b.

$$y = 3x - 1$$
$$y = 3x + 2$$

С.

$$2x - y = 0$$
$$y = 2x$$

APPLICATION

A band plans to record a demo. Studio A rents for \$100 plus \$50 per hour. Studio B rents for \$50 plus \$75 per hour. The total cost, y, in dollars, of renting the studios for x hours can be modeled by the linear system

$$y = 50x + 100$$
$$y = 75x + 50$$

a. Use graphing to solve the system. Extend the x-axis from 0 to 4 and let each tick mark represent 1 unit (one hour in a recording studio). Extend the y-axis from 0 to 400 and let each tick mark represent 100 units (a rental cost of \$100).

b. Interpret the coordinates of the solution in practical terms.