Section 4.1: SOLVING SYSTEMS OF LINEAR EQUATIONS BY GRAPHING
When you are done with your homework you should be able to...
π Decide whether an ordered pair is a solution of a linear system
π Solve systems of linear equations by graphing
π Use graphing to identify systems with no solution or infinitely many solutions
π Use graphs of linear systems to solve problems
WARM-UP:

1. Determine if the given number or ordered pair is a solution to the given equation.
a. $5 x+3=21 ; \frac{18}{5}$
b. $-x+2 y=0 ;(4,1)$
2. Graph the line which passes through the points $(0,1)$ and $(-5,3)$.

SYSTEMS OF LINEAR EQUATIONS AND THEIR SOLUTIONS
We have seen that all \qquad in the form \qquad are
straight \qquad when graphed. \qquad such equations are called a
\qquad of \qquad
\qquad or a
\qquad
\qquad . A \qquad to a system
of two \qquad equations in two \qquad is an that \qquad
equations in the \qquad .

Example 1: Determine whether the given ordered pair is a solution of the system.
a.
$(-2,-5)$
$6 x-2 y=-2$
b.
$3 x+y=-11$

$$
\begin{align*}
& 6 x-5 y=25 \tag{10,7}\\
& 4 x+15 y=13
\end{align*}
$$

SOLVING LINEAR SYSTEMS BY GRAPHING

The \qquad of a \qquad of two linear equations in
\qquad variables can be found by \qquad of the
\qquad in the \qquad rectangular \qquad
system. For a system with \qquad solution, the \qquad of the point of \qquad give the \qquad solution.

STEPS FOR SOLVING SYSTEMS OF TWO LINEAR EQUATIONS IN TWO VARIABLES, x AND y, BY GRAPHING

1. Graph the first \qquad .
2. \qquad the second equation on the \qquad set of
\qquad .
3. If the \qquad representing the \qquad graphs \qquad at a \qquad determine the \qquad of this point of
intersection. The \qquad is the \qquad of the \qquad .
4. \qquad the \qquad in \qquad equations.

Example 2: Use the graph below to find the solution of the system of linear equations.

Example 3: Solve each system by graphing. Use set notation to express solution sets.
a.

$$
\begin{aligned}
& x+y=2 \\
& x-y=4
\end{aligned}
$$

b.

$$
\begin{aligned}
& y=3 x-4 \\
& y=-2 x+1
\end{aligned}
$$

C.

$$
\begin{aligned}
x+y & =6 \\
y & =-3
\end{aligned}
$$

LINEAR SYSTEMS HAVING NO SOLUTION OR INFINITELY MANY SOLUTIONS

We have seen that a \qquad of linear equations in \qquad variables represents a \qquad of \qquad . The lines either
\qquad at \qquad point, are \qquad , or are Thus, there are \qquad possibilities for the \qquad of solutions to a system of two linear equations.

THE NUMBER OF SOLUTIONS TO A SYSTEM OF TWO LINEAR EQUATIONS

NUMBER OF SOLUTIONS	WHAT THIS MEANS GRAPHICALLY
Exactly \qquad ordered pair solution.	The two lines \qquad at \qquad point. This is a \qquad system.
Solution	The two lines are \qquad This is an \qquad system.
[many solutions	The two lines are \qquad This is a system with \qquad equations.

Example 4: Solve each system by graphing. If there is no solution or infinitely many solutions, so state. Use set notation to express solution sets.
a.

$$
\begin{aligned}
& x+y=4 \\
& 2 x+2 y=8
\end{aligned}
$$

b.

$$
\begin{aligned}
& y=3 x-1 \\
& y=3 x+2
\end{aligned}
$$

c.

$$
\begin{aligned}
2 x-y & =0 \\
y & =2 x
\end{aligned}
$$

APPLICATION

A band plans to record a demo. Studio A rents for $\$ 100$ plus $\$ 50$ per hour. Studio B rents for $\$ 50$ plus $\$ 75$ per hour. The total cost, y, in dollars, of renting the studios for x hours can be modeled by the linear system

$$
\begin{aligned}
& y=50 x+100 \\
& y=75 x+50
\end{aligned}
$$

a. Use graphing to solve the system. Extend the x-axis from 0 to 4 and let each tick mark represent 1 unit (one hour in a recording studio). Extend the y-axis from 0 to 400 and let each tick mark represent 100 units (a rental cost of \$100).

b. Interpret the coordinates of the solution in practical terms.

