Section 3.5: THE POINT-SLOPE FORM OF THE EQUATION OF A LINE
When you are done with your homework you should be able to...
π Use the point-slope form to write equations of a line
π Find slopes and equations of parallel and perpendicular lines
π Write linear equations that model data and make predictions
WARM-UP:

1. Simplify.

$$
2-5[2-(7 x+2)]
$$

2. Graph the equation using the slope and y-intercept.

$$
-\frac{x}{3}-\frac{y}{4}=1
$$

POINT-SLOPE FORM

We can use the \qquad of a line to obtain another useful form of the line's equation. Consider a nonvertical line that has slope \qquad and contains the point \qquad Now let \qquad represent any other \qquad on
the \qquad . Keep in mind that the point \qquad is
\qquad and is \qquad in \qquad
\qquad position. The point \qquad is \qquad .

POINT-SLOPE FORM OF THE EQUATION OF A LINE

\square - \qquad form of the \qquad
of a nonvertical line with slope \qquad that passes through the point \qquad is

Example 1: Write the point-slope form of the equation of the line with the given slope that passes through the given point.
a. $m=-2 ;(5,-11)$
b. $m=\frac{5}{8} ;\left(\frac{1}{4}, 7\right)$
c. $m=0 ;(-21,5)$
d. $m=$ undefined; $(0,0)$

Example 2: Use the graph to find three equations of the line in point-slope form.
1.
2.
3.

Now write the slope-intercept form:

EQUATIONS OF LINES

FORM	WHAT YOU SHOULD KNOW
Standard Form	Graph equations in this form using \qquad and a \qquad .
$y=b$	Graph equations in this form as \qquad lines with \qquad as the \qquad -
$x=a$	Graph equations in this form as \qquad lines with \qquad as the \qquad
Slope-Intercept Form	Graph equations in this form using the \qquad \qquad and the slope, \qquad —. *Start with this form when writing a \qquad equation if you know a line's \qquad and \qquad .
Point-Slope Form	Start with this form when writing a linear equation if you know the \qquad of the line and a \qquad on the \qquad NOT containing the \qquad OR

\qquad
of which contains the \qquad .

Calculate the \qquad using

PARALLEL AND PERPENDICULAR LINES
Recall that parallel lines have the \qquad
\qquad and perpendicular lines have \qquad which are \qquad .

Example 3: Use the given conditions to write an equation for each line in pointslope form and slope-intercept form.
a. Passing through $(-2,-7)$ and parallel to the line whose equation is $y=-5 x+4$.
b. Passing through $(-4,2)$ and perpendicular to the line whose equation is

$$
y=-\frac{1}{3} x+7
$$

c. Passing through $(5,-9)$ and parallel to the line whose equation is $x+7 y=12$.

