Section 3.3: SLOPE
When you are done with your homework you should be able to...
π Compute a line's slope
π Use slope to show that lines are parallel
π Use slope to show that lines are perpendicular
π Calculate rate of change in applied situations

WARM-UP:

Graph each equation.
a. $y-2=0$

b. $-2 x-3 y=9$

x	$-2 x-3 y=9$	(x, y)

THE SLOPE OF A LINE
Mathematicians have developed a useful \qquad of the of a line, called the \qquad of the line. Slope
compares the \qquad change (the \qquad) to the
\qquad change (the \qquad) when moving from one \qquad point to another along the line.
DEFINITION OF SLOPE
The___ is of the line through the distinct points____ and
where ___ it is common to use the letter ___ to represent
the slope of a line. This letter is used because it is the first letter of the French
verb monter, meaning to rise, or to ascend.

Example 1: Find the slope of the line passing through each pair of points:
a. $(-1,4)$ and $(3,-6)$
b. $\left(8, \frac{3}{2}\right)$ and $\left(-\frac{5}{2}, 7\right)$

Example 2: Use the graph to find the slope of the line

POSSIBILITIES FOR A LINE'S SLOPE

POSITIVE SLOPE	NEGATIVE SLOPE	ZERO SLOPE	UNDEFINED SLOPE

SLOPE AND PARALLEL LINES

Two \qquad lines that lie in the same plane are
\qquad . If two lines do not \qquad the \qquad of
the \qquad change to the \qquad change is the
\qquad for each \qquad . Because two parallel lines have the same , they must have the same \qquad .

1. If two nonvertical lines are \qquad then they have the same
\qquad
2. If two distinct nonvertical lines have the same \qquad then they are \qquad .
3. Two distinct vertical lines, each with \qquad slope, are

SLOPE AND PERPENDICULAR LINES

Two lines that \qquad at a \qquad
(__) are said to be \qquad .

1. If two nonvertical lines are \qquad then the \qquad of their \qquad is \qquad .
2. If the \qquad of the \qquad of two lines is \qquad then the lines are \qquad .
3. A \square line having slope is to a vertical line having slope.

Example 3: Determine whether the lines through each pair of points are parallel, perpendicular, or neither.
a. $(-2,-15)$ and $(0,-3) ;(-12,6)$ and $(6,3)$
b. $(-2,-7)$ and $(3,13) ;(-1,-9)$ and $(5,15)$
c. $(-1,-11)$ and $(0,-5) ;(0,-8)$ and $(12,-6)$

APPLICATION

Construction laws are very specific when it comes to access ramps for the disabled. Every vertical rise of 1 foot requires a horizontal run of 12 feet. What is the grade of such a ramp? Round to the nearest tenth of a percent.

