Section 3.1: GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

When you are done with your homework you should be able to ...

- π Plot ordered pairs in the rectangular coordinate system
- $\pi\,$ Find coordinates of points in the rectangular coordinate system
- $\pi~$ Determine whether an ordered pair is a solution of an equation
- $\pi~$ Find solutions of an equation in two variables
- π Use point plotting to graph linear equations
- π Use graphs of linear equations to solve problems

WARM-UP:

1. Find the volume of a box with dimensions $\frac{1}{2}$ ft by 3 ft by 8 ft.

2. Solve the following inequalities and graph the solution sets. a. $x \le 6(3x-5)$

b. $2x - 1 \le 2x$

POINTS AND ORDERED PAIRS

The idea of visualizing equations as geometric figures was developed by the French philosopher and mathematician ______. This idea is the ______ system or the coordinate system. The rectangular coordinate system consists of _____ at right _____ at their _____ points. The horizontal number line is the _____ and the vertical number line is the _____. The point of intersection is a ______ called the _____. Positive numbers are to the _____ and _____ the origin. Negative numbers are to the _____ and _____ the origin. The _____ divide the _____ into _____ regions, called _____. The points located on the ______ are _____ in any guadrant. Each in the rectangular coordinate system to an ______. The ______ of real numbers, _____. The ______ number in each pair, called the _____, denotes the _____ and ______ from the _____ along the _____. The second number, called the _____, denoted the _____ distance along a ______ or along the _____ itself.

Example 1: Plot the following ordered pairs.

(2,5), (-3,7), (-2,-4)

SOLUTIONS OF EQUATIONS IN TWO VARIABLES

A	_ of an	in	variables,
and, is an		of real numbers	s with the
following property: When	the	is substituted for	r and
the	is substituted for	in the equation, w	ve obtain a
statement.			

Example 2: Determine whether each of the given points is a solution of the equation 8x + y = 1.

a. (0,1) b. (-1,3) c. (2,-15)

3.1

Example 3: Find three solutions of 2y = -x - 1.

GRAPHING LINEAR EQUATIONS IN THE FORM y = mx + b

The ______ of the ______ is the _____ of all _____

whose ______ satisfy the equation.

STEPS FOR USING THE POINT-PLOTTING METHOD FOR GRAPHING AN EQUATION IN TWO VARIABLES

Find several ______ that are ______ of the equation.
Plot these ordered pairs as ______ in the ______ coordinate system.
______ the points with a ______ curve or _____, depending on the type of equation.

Example 3: Graph the following equations by plotting points.

a. y = 2x

x	y = 2x	(x, y)	
			•
			

b. y = -3x + 9

x	y = -3x + 9	(x, y)

c.
$$y = \frac{2}{5}x + 3$$

x	$y = \frac{2}{5}x + 3$	(x, y)

APPLICATION

In 1960, per capita fish consumption was 10 pounds. This increased by approximately 0.15 pound per year from 1960 through 2005. These conditions can be described by the mathematical model F = 0.15n+10, where F is per capita fish consumption *n* years after 1960.

a. Let n = 0, 10, 20, 30, and 40. Make a table of values showing five solutions of the equation.

п	F = 0.15n + 10	(n,F)

b. Graph the formula in a rectangular coordinate system.

c. Use the graph to estimate per capita fish consumption in 2020.

d. Use the formula to project per capita fish consumption in 2020.