Section 2.7: SOLVING LINEAR INEQUALITIES

When you are done with your homework you should be able to ...

- π Graph the solutions of an inequality on a number line
- π Use interval notation
- π Understand properties used to solve linear inequalities
- π Solve linear inequalities
- π Identify inequalities with no solution of infinitely many solutions
- π Solve problems using linear inequalities

WARM-UP:

Solve:

Find the volume of a sphere with diameter 11 meters.

VOCABULARY

Linear inequality in one v	variable: An inequality in th	e form
	,,	or
is a linear inequality in on	e variable means _	,
means	or	, means
, and _	means	or
·		

	2.7
Solving an inequality: The of finding the	_of
that will make the inequality astate	ment. These
numbers are called the <u>solutions</u> of the, and we s	ay they <u>satisfy</u>
the ofsolutions	s is called the
solution set of the inequality.	
GRAPHS OF INEQUALITIES	
There are solutions to the i	nequality
x > 5. In other words, the solution set for this inequality is all	
numbers which are	. Can we list all
these numbers? What does the graph of the solution set look like? I	-Immm

Graphs of	to		are
shown on a	by shading _		
representing number	ers that are	·	
,	, indicate	that are	
and	,, indicate	that are	
Example 1: Graph tl a. x≤6 -10 -9 -8 -7 -6	 he solutions of each inequality. 	 4 5 6 7 8 9	10

SOLUTION SETS OF INEQUALITIES

INEQUALITY	INTERVAL NOTATION	SET-BUILDER NOTATION	GRAPH
x > a			
$x \ge a$			
<i>x</i> < <i>b</i>			
$x \leq b$			
a < x < b			
$a \le x \le b$			
$a < x \le b$			
$a \le x < b$			

PARENTHESIS ARE ALWAYS USED WITH _____ OR _____

!!!

PROPERTIES OF INEQUALITIES

PROPERTY	THE PROPERTY IN WORDS	EXAMPLE
THE ADDITION PROPERTY OF INEQUALITY If If If		
THE POSITIVE MULTIPLICATION PROPERTY OF INEQUALITY If and is positive, then If and is positive, then		

MATH 830/GRACEY		2.7
THE NEGATIVE PROPERTY OF INEQUALITY		
If and is		
negative, then If and is		
negative, then		
STEPS FOR SOLVING A LINE	AR INEQUALITY	
1. Simplify the	0	n each side.
2. Use the	_ property of	to collect all
the te	erms on one side and all the	2
terms on the other side.		
3. Use the	property of	to
the	and	
the	of the	when
or		both sides by a

Example 2: Solve each inequality and graph the solution.

a. $x - 3 \le 2$

ECC AN	DGNIZING INEQUALITIES WITH NO SOLUTION OR INFINITELY IY SOLUTIONS
⁻ yo	ou attempt to solve an inequality with or one that is
	fornumber, you will
ie_	
π	An inequality with results in a
	statement, such as The solution set is or, the
	set, and the is an number
	line.
π	An inequality that is for number
	results in a statement, such as The solution set is
	or, and the graph is a
	line.
	$\frac{\mathbf{ECC}}{\mathbf{A}\mathbf{h}}$ $\frac{\mathbf{A}\mathbf{h}}{\pi}$ π

Example 3: Solve each inequality and graph the solution.

a.
$$2(x+1)-1 \le 2x+1$$

b.
$$5x > 2(x-7) + 3x$$

APPLICATION

- 1. On three examinations, you have grades of 88, 78, and 86. There is still a final examination, which counts as one grade.
 - a. In order to get an A, your average must be at least 90. If you get 100 on the final, compute your average and determine if an A in the course is possible.

2.7

b. To earn a B in the course, you must have a final average of at least 80. What must you get on the final to earn a B in the course?