Section 2.1: THE ADDITION PROPERTY OF EQUALITY

When you are done with your homework you should be able to ...

- π Identify linear equations in one variable
- π Use the addition property of equality to solve equations
- π Solve applied problems using formulas

WARM-UP:

Simplify:

1. $\frac{1}{2} - \frac{2}{3} \div \frac{5}{9} + \frac{3}{10}$ 2. $-40 \div 5 \cdot 2$

LINEAR EQUATIONS IN ONE VARIABLE

Ν	MATH 830/GRACEY	1.2	
	VOCABULARY		
	<u>Solving an equation</u> : The of finding the	(or	
) that make the equation a	_statement. These	
	numbers are called the or	of the equation,	
	and we say that they the equation.		
	numbers are called the or and we say that they the equation.	of the equation,	

DEFINITION OF A LINEAR EQUATION IN ONE VARIABLE

A in	is		
an equation that can be written in the form			
where,, and are real numbers, and			

Example 1: Give three examples of a linear equation in one variable.

1.

2.

3.

Example 2: Give two examples of a nonlinear equation in one variable.

1.

2.

Example 3: Solve the following equations. Check your solutions.

1. y-5=-18 **4.** $-\frac{1}{8}+x=-\frac{1}{4}$

2. 18 + z = 14 **5.** -3x - 5 + 4x = 9

3.
$$x+10.6 = -9$$

6. $7x+3 = 6(x-1)+9$

ADDING AND SUBTRACTING VARIABLE TERMS ON BOTH SIDES OF AN EQUATION

Our goal is to ______ all the _____ terms on one side of

the equation. We can use the ______ of

_____ to do this.

APPLICATIONS

1. The cost, C, of an item (the price paid by a retailer) plus the markup, M, on that item (the retailer's profit) equals the selling price, S, of the item. The formula is C + M = S.

The selling price of a television is \$650. If the cost to the retailer for the television is \$520, find the markup.

2. What is the difference between solving an equation such as 5y+3-4y-8=6+9 and simplifying an algebraic expression such as 5y+3-4y-8?