Section 2.1: THE ADDITION PROPERTY OF EQUALITY

When you are done with your homework you should be able to...
π Identify linear equations in one variable
π Use the addition property of equality to solve equations
π Solve applied problems using formulas
WARM-UP:
Simplify:

$$
\text { 1. } \frac{1}{2}-\frac{2}{3} \div \frac{5}{9}+\frac{3}{10}
$$

2. $-40 \div 5 \cdot 2$

LINEAR EQUATIONS IN ONE VARIABLE

In Chapter 1, we learned that an \qquad is a statement that two expressions are \qquad We determined
whether a given number is an equation's \qquad by substituting that number for each occurrence of the \qquad When the
\qquad resulted in a true statement, that \qquad was a \qquad . When the substituted number resulted in a statement, that number was \qquad a \qquad .

VOCABULARY

Solving an equation: The \qquad of finding the (or
) that make the equation a \qquad statement. These
numbers are called the \qquad or \qquad of the equation, and we say that they \qquad the equation.

DEFINITION OF A LINEAR EQUATION IN ONE VARIABLE

Example 1: Give three examples of a linear equation in one variable.
1.
2.
3.

Example 2: Give two examples of a nonlinear equation in one variable.
1.
2.

VOCABULARY

Equivalent equations: Equations that have the \qquad solution are

THE ADDITION PROPERTY OF EQUALITY

Example 3: Solve the following equations. Check your solutions.

1. $y-5=-18$
2. $-\frac{1}{8}+x=-\frac{1}{4}$
3. $18+z=14$
4. $-3 x-5+4 x=9$
5. $x+10.6=-9$
6. $7 x+3=6(x-1)+9$

ADDING AND SUBTRACTING VARIABLE TERMS ON BOTH SIDES OF AN EQUATION

Our goal is to \qquad all the \qquad terms on one side of
the equation. We can use the \qquad of
to do this.

APPLICATIONS

1. The cost, C, of an item (the price paid by a retailer) plus the markup, M, on that item (the retailer's profit) equals the selling price, S, of the item. The formula is $C+M=S$.

The selling price of a television is $\$ 650$. If the cost to the retailer for the television is $\$ 520$, find the markup.
2. What is the difference between solving an equation such as $5 y+3-4 y-8=6+9$ and simplifying an algebraic expression such as $5 y+3-4 y-8$?

