Section 1.8: EXPONENTS AND ORDER OF OPERATIONS
When you are done with your homework you should be able to...
π Evaluate exponential expressions
π Simplify algebraic expressions with exponents
π Use the order of operations agreement
π Evaluate mathematical models
WARM-UP:
Determine whether the given number is a solution of the equation.
$\frac{5 m-1}{6}=\frac{3 m-2}{4} ;-4$

Write a numerical expression for each phrase. Then simplify the numerical expression.

1. 14 added to the product of 4 and -10
2. The quotient of -18 and the sum of -15 and 12

DEFINITION OF A NATURAL NUMBER EXPONENT

If b is a real number and n is a natural number,
\qquad of \qquad " or " \qquad to the \qquad power. The expression \qquad is called an \qquad .

Example 1: Evaluate.

1. $(-5)^{3}$
2. $(-12)^{2}$

ORDER OF OPERATIONS

1. Perform all \qquad within \qquad symbols
2. Evaluate all \qquad expressions.
3. Do all \qquad and \qquad in the order in which they occur, working from \qquad to \qquad .
4. Finally, do all \qquad and \qquad using one of the following procedures: π Work from \qquad to \qquad and do additions and
subtractions in the \qquad in which they occur.
or
π Rewrite subtractions as of \qquad .

Combine \qquad and \qquad numbers
separately, and then \qquad these results.

Example 2: Simplify.

1. $40 \div 4 \cdot 2$
2. $\frac{-5(7-2)-3(4-7)}{-13-(-5)}$
3. $(3 \cdot 5)^{2}-3 \cdot 5^{2}$
4. $\left[-\frac{4}{7}-\left(-\frac{2}{5}\right)\right]\left[-\frac{3}{8}+\left(-\frac{1}{9}\right)\right]$

Example 3: Simplify each algebraic expression.

1. $-6 x^{2}+18 x^{2}$
2. $4\left(7 x^{3}-5\right)-\left[2\left(8 x^{3}-1\right)+1\right]$
3. $6-5[8-(2 y-4)]$

APPLICATIONS

In Palo Alto, CA, a government agency ordered computer-related companies to contribute to a pool of money to clean up underground water supplies. (The companies had stored toxic chemicals in leaking underground containers). The mathematical model $C=\frac{200 x}{100-x}$ describes the cost, C, in tens of thousands of dollars, for removing x percent of the contaminants.

1. Find the cost, in tens of thousands of dollars, for removing 50% of the contaminants.
2. Find the cost, in tens of thousands of dollars, for removing 60% of the contaminants.
3. Describe what is happening to the cost of the cleanup as the percentage of contaminant removed increases.
