Section 1.7: MULTIPLICATION AND DIVISION OF REAL NUMBERS

When you are done with your homework you should be able to...
π Multiply real numbers
π Multiply more than two real numbers
π Find multiplicative inverses
π Use the definition of division
π Divide real numbers
π Simplify algebraic expressions involving multiplication
π Determine whether a number is a solution of an equation
π Use mathematical models involving multiplication and division
WARM-UP:
Find the value of each expression:

1. $\frac{9}{10}-\left(\frac{1}{4}-\frac{7}{10}\right)$
2. $-|-8-(-2)|-(-6)$

Write each English phrase as an algebraic expression. Let x represent the number:

1. The difference between 9 times a number and -4 times a number
2. The quotient of -7 and a number subtracted from the quotient of -12 and a number

THE PRODUCT OF TWO REAL NUMBERS

π The \qquad of two real numbers with \qquad signs is
found by \qquad their \qquad values. The
product is \qquad .
π The \qquad of two real numbers with the \qquad sign is
found by \qquad their \qquad values. The
product is \qquad .
π The \qquad of zero and any real number is \qquad .

Example 1: Multiply.

1. $-15(5)$
2. $8.3(-2)$
3. $\frac{4}{3} \cdot 0$
4. $(-11)(-12)$

MULTIPLYING MORE THAN TWO NUMBERS

1. Assuming that no factor is zero,
π The \qquad of an \qquad number of
\qquad
numbers is \qquad .
π The \qquad of an \qquad number of \qquad
numbers is \qquad .
2. If any \qquad is \qquad the product is \qquad .

Example 2: Multiply.

$$
\text { 1. }-7(5)(-6) \cdot 2
$$

2. $(13)(-1)\left(-\frac{5}{2}\right)(-8)$

THE MEANING OF DIVISION

The result of \qquad the real number \qquad by the nonzero real number \qquad is called the \qquad of \qquad and \qquad . We can write this as \qquad or \qquad We can define division in
terms of \qquad by using \qquad inverse or

Example 3: Find the multiplicative inverse of each number.

1. 12
2. $-\frac{1}{4}$
3. $-\frac{7}{8}$

DEFINITION OF DIVISION

If a and b are real numbers and b is not equal to zero, then the \qquad
of \qquad and \qquad is defined as

The \qquad of two real numbers is the \qquad of the number and the
number.
Example 4: Divide using the definition of division.

$$
\text { 1. } 5 \div \frac{1}{5}
$$

2. $\frac{-123}{-3}$

THE QUOTIENT OF TWO REAL NUMBERS

π The \qquad of two real numbers with \qquad signs is
found by \qquad their \qquad values. The
quotient is \qquad .
π The \qquad of two real numbers with the \qquad sign is
found by \qquad their \qquad values. The
quotient is \qquad .
π Division of any real number by \qquad is \qquad .
π Any nonzero number divided into \qquad is \qquad

Example 5: Divide.
3. $-\frac{2}{5} \div \frac{1}{10}$
5. $\frac{123}{-3}$
4. $\frac{0}{123}$
6. $-1.8 \div(-0.6)$

ADDITIONAL PROPERTIES OF MULTIPLICATION

PROPERTY	MEANING	EXAMPLES
IDENTITY PROPERTY OF MULTIPLICATION		
INVERSE PROPERTY OF MULTIPLICATION		
MULTIPLICATION PROPERTY OF -1		
DOUBLE NEGATIVE PROPERTY		

NEGATIVE SIGNS AND PARENTHESIS

\qquad sign precedes parentheses, the
parentheses and \qquad the \qquad of \qquad within the parentheses.

Example 6: Simplify.

1. $-4(-3 x+2)$
2. $5(3 y-1)-(14 y-2)$

APPLICATIONS

Use the formula $C=\frac{5}{9}(F-32)$ to express each Fahrenheit temperature, F, as its equivalent Celsius temperature, C.

1. $-13^{\circ} \mathrm{F}$
2. $5^{\circ} \mathrm{F}$
