Section 1.4: BASIC RULES OF ALGEBRA

When you are done with your homework you should be able to ...

- π Understand and use the vocabulary of algebraic expressions
- $\pi~$ Use commutative properties
- π Use associative properties
- π Use distributive properties
- π Combine like terms
- π Simplify algebraic expressions

WARM-UP:

Perform the indicated operation and simplify:

1.
$$\frac{57}{4} \div \frac{3}{2}$$
 2. $\frac{3}{14} - \frac{1}{10}$

VOCABULARY OF ALGEBRAIC EXPRESSIONS

Terms: The	of an	expression a	re those parts
that are	by	or	A
is a	, a	, or a	
·	by on	e or more	·
Coefficient: The	part	of a	is called its
What is the coefficient of a term which only has			
variables?			

MATH 830/GRACEY	1.4
Constant term: A term that consists of just a	is called a
 Like terms: Terms that have the the	
are called	·
Are constant terms like terms?	

Example 1: Consider the following algebraic expression: -12x+9+7x-8

- 1. How many terms are there in the algebraic expression?
- 2. What is the coefficient of the first term?
- 3. List the constant term(s):
- 4. What are the like terms in the algebraic expression?

EQUIVALENT ALGEBRAIC EXPRESSIONS

Two ______ expressions that have the ______ value for ______ replacements are called ______.

Example 2: Evaluate the following two algebraic expressions at x = 2.

1. -12x+9+7x-8 2. -5x+1

MATH	830/	'GRA	ACEY

THE COMMUTATIVE PROPERTIES		
Let <i>a</i> and <i>b</i> represent real numbers, variables, or algebraic expressions.		
Commutative Property of Addition:		
Changing when adding does not affect the		
Commutative Property of Multiplication:		
Changing when multiplying does not affect the		

1.4

Example 3: Use the commutative property to write an algebraic expression equivalent to each of the following:

1. 2x + 4 **2.** $x \cdot 13$

THE ASSOCIATIVE PROPERTIES

Let a, b, and c represent real numbers, variables, or algebraic expressions.

Associative Property of Addition:

Changing .

_ when adding does not affect the ___

Example 4: Use the associative property to simplify the algebraic expressions:

1. 4x + (7 + x)2. 25(4x)

THE DISTRIBUTIVE PROPERTY

Let a, b, and c represent real numbers, variables, or algebraic expressions.

Multiplication _____ over _____

Example 5: Multiply:

1. 3(x+5)

2. -(4+x)

OTHER FORMS OF THE DISTRIBUTIVE PROPERTY

PROPERTY	MEANING	EXAMPLES
a(b-c)		
=ab-ac		
a(b+c+d)		
=ab+ac+ad		
(b+c)a		
=ba+ca		

MATH 830/GRACEY			1.4
COMBINING LIKE TER	MS		
The	_ property lets us	and	

Example 6: Combine like terms:

1. 3(4x) + (-x + 21)

like terms.

2. 9x + (x+5) - 2(-x+11+3y)

STEPS FOR SIMPLIFYING ALGEBRAIC EXPRESSIONS

1. Use the propert	y to remove
2. Rearrange terms and	terms using the
and	properties. As you
hone your skills, you'll be doing this step m	entally!

APPLICATIONS

The percentage of U.S. women, W, who used the internet n years after 2000 can be modeled by the formula W = 2(2n+25)+0.5(n+2).

1. Simplify the formula.

2. Use the simplified form of the mathematical model to find the percentage of U.S. women who used the internet in 2005.