Section 1.4: BASIC RULES OF ALGEBRA

When you are done with your homework you should be able to...
π Understand and use the vocabulary of algebraic expressions
π Use commutative properties
π Use associative properties
π Use distributive properties
π Combine like terms
π Simplify algebraic expressions
WARM-UP:
Perform the indicated operation and simplify:

1. $\frac{57}{4} \div \frac{3}{2}$
2. $\frac{3}{14}-\frac{1}{10}$

VOCABULARY OF ALGEBRAIC EXPRESSIONS

Terms: The \qquad of an \qquad expression are those parts that are \qquad by \qquad or \qquad . A
\qquad is a \qquad a \qquad or a
\qquad What is the coefficient of a term which only has variables?

Constant term: A term that consists of just a \qquad is called a

Like terms: Terms that have the \qquad the \qquad
are called \qquad
Are constant terms like terms?

Example 1: Consider the following algebraic expression: $-12 x+9+7 x-8$

1. How many terms are there in the algebraic expression?
2. What is the coefficient of the first term?
3. List the constant term(s):
4. What are the like terms in the algebraic expression?

EQUIVALENT ALGEBRAIC EXPRESSIONS

Two \qquad expressions that have the \qquad value for \qquad replacements are called \qquad
\qquad
\qquad ـ.

Example 2: Evaluate the following two algebraic expressions at $x=2$.

1. $-12 x+9+7 x-8$
2. $-5 x+1$

THE COMMUTATIVE PROPERTIES

Let a and b represent real numbers, variables, or algebraic expressions.
Commutative Property of Addition:

Changing \qquad when adding does not affect the \qquad .

Commutative Property of Multiplication:

Changing \qquad when multiplying does not affect the \qquad .

Example 3: Use the commutative property to write an algebraic expression equivalent to each of the following:

1. $2 x+4$
2. $x \cdot 13$

THE ASSOCIATIVE PROPERTIES
Let a, b, and c represent real numbers, variables, or algebraic expressions. Associative Property of Addition:
\qquad when adding does not affect the \qquad .

Associative Property of Multiplication:

Changing \qquad when multiplying does not affect the \qquad .

Example 4: Use the associative property to simplify the algebraic expressions:

1. $4 x+(7+x)$
2. $25(4 x)$

THE DISTRIBUTIVE PROPERTY

Let a, b, and c represent real numbers, variables, or algebraic expressions.

Multiplication \qquad over \qquad .

Example 5: Multiply:

1. $3(x+5)$
2. $-(4+x)$

OTHER FORMS OF THE DISTRIBUTIVE PROPERTY

PROPERTY	MEANING	EXAMPLES
$a(b-c)$ $=a b-a c$ $a(b+c+d)$ $=a b+a c+a d$		
$(b+c) a$		
$b a+c a$		

COMBINING LIKE TERMS

The \qquad property lets us \qquad and \qquad like terms.

Example 6: Combine like terms:

1. $3(4 x)+(-x+21)$
2. $9 x+(x+5)-2(-x+11+3 y)$

STEPS FOR SIMPLIFYING ALGEBRAIC EXPRESSIONS

1. Use the \qquad property to remove \qquad .
2. Rearrange terms and terms using the
and \qquad properties. As you
hone your skills, you'll be doing this step mentally!
3. Combine \qquad terms by combining the \qquad of the \qquad and keeping the same \qquad .

APPLICATIONS

The percentage of U.S. women, W, who used the internet n years after 2000 can be modeled by the formula $W=2(2 n+25)+0.5(n+2)$.

1. Simplify the formula.
2. Use the simplified form of the mathematical model to find the percentage of U.S. women who used the internet in 2005.
