Section 1.3: THE REAL NUMBERS

When you are done with your homework you should be able to ...

- $\pi~$ Define the sets that make up the real numbers
- $\pi\,$ Graph numbers on a number line
- π Express rational numbers as decimals
- $\pi\,$ Classify numbers as belonging to one or more sets of the real numbers
- π Understand and use inequality symbols
- π Find the absolute value of a real number

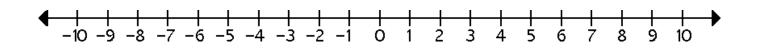
WARM-UP:

Perform the indicated operation and simplify:

1. $\frac{10}{27} \cdot \frac{3}{2}$ 2. $\frac{28}{9} + \frac{2}{3}$

NATURAL NUMBERS AND WHOLE NUMBERS

A _____ is a _____ of objects whose contents can be clearly


determined. The objects in a set are called the _____ of the set.

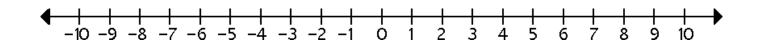
The	of	_ numbers is
The	of	numbers is
		The of

		1.3
INTEGER	S AND THE NUMBER LINE	
The	consisting of the	numbers,,
and the	of the	numbers is called the set
of	·	
<u>Integers</u> :	The of	is

Example 1: Consider the following integers: 3, -3, 5, -5, 0

Graph each integer in the list on the same number line.

RATIONAL NUMBERS


If two ______ are added, subtracted, or multiplied, the result is always another ______. Is this true when one integer is divided by another?

The set of	_numbers is the set of all numbers that can be
expressed in the form	, where and are
and is equal to	(). The integer is called
the and the int	teger is called the

Are all integers rational numbers?

Example 2: Consider the following rational numbers: $-\frac{1}{2}$, $\frac{9}{4}$, -8, $-6\frac{2}{3}$

Graph each integer in the list on the same number line.

Example 3: Divide

1. 3÷8

2. 3÷11

RATIONAL NUMBERS AND DECIMALS

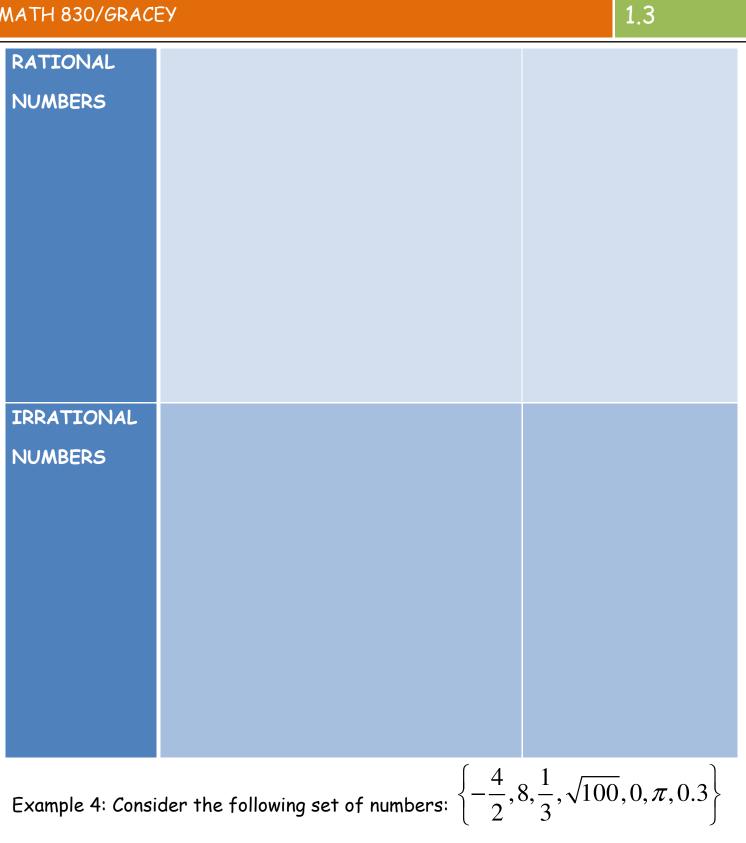
Any	number can be expressed as a The resulting
decimal will either), or it will have a digit or block
of digits that	

MATH 830/GRACEY

IRRATIONAL NUMBERS

Any number that can be re	epresented on the	line that is
a n	umber is called an	number. In
other words, the set of irr	rational numbers is the set o	of numbers whose
representations are neithe	2r	nor

THE SET OF REAL NUMBERS


All numbers that can be represented by ______ on the number line are

called _____ numbers.

THE SETS THAT MAKE UP THE REAL NUMBERS

NAME	DESCRIPTION	EXAMPLES
NATURAL		
NUMBERS		
WHOLE		
NUMBERS		
INTEGERS		

MATH 830/GRACEY

List the numbers in the set that are

1. Natural numbers 2. Whole numbers 3. Integers

MATH 830/GRACEY		1.3
4. Rational numbers	5. Irrational numbers	6. Real numbers
INEQUALITY SYMBOLS		
On the real number line, the _	numbers	from
to The	or two real numbers is th	e one farther to the
on a number line.	The of two	o real numbers is the
one farther to the	on a number line.	

NOTATION

Example 5: Insert < or > between each pair of integers to make the statement true.

1.	3	5	4.	-3	0
2.	3	0	5.	0	3
	-3		6.	-5	5

MATH 830/GRACEY

ABSOLUTE VALUE

The	of a real number, denoted		
, is the	_ from	_ to	on a number line. Is
the output of an absolute value expression ever negative?			
Example 6: Find the absolute value:			

1. 2.5

2. |-8|

APPLICATIONS

The table below shows the amount spent on iPAD apps by Shannon's family during the months of May and July of 2011.

Name	Amount
Shannon	\$48
Morgan	\$67
Rory	\$25
Erin	\$32
Nicole	\$12

- 1. Graph the five dollar amounts on a number line.
- 2. Write the names in order from the least spent on apps to the most spent on apps