Section 1.3: THE REAL NUMBERS

When you are done with your homework you should be able to...
π Define the sets that make up the real numbers
π Graph numbers on a number line
π Express rational numbers as decimals
π Classify numbers as belonging to one or more sets of the real numbers
π Understand and use inequality symbols
π Find the absolute value of a real number
WARM-UP:
Perform the indicated operation and simplify:

1. $\frac{10}{27} \cdot \frac{3}{2}$
2. $\frac{28}{9}+\frac{2}{3}$

NATURAL NUMBERS AND WHOLE NUMBERS

A \qquad is a \qquad of objects whose contents can be clearly
determined. The objects in a set are called the \qquad of the set.

Natural numbers: The \qquad of \qquad numbers is
\qquad of \qquad numbers is

INTEGERS AND THE NUMBER LINE

The \qquad consisting of the \qquad numbers, \qquad and the \qquad of the \qquad numbers is called the set of \qquad .

Integers: The \qquad of \qquad is

Example 1: Consider the following integers: $3,-3,5,-5,0$
Graph each integer in the list on the same number line.

RATIONAL NUMBERS

If two \qquad are added, subtracted, or multiplied, the result is always another \qquad Is this true when one integer is divided by another?

The set of \qquad numbers is the set of all numbers that can be expressed in the form \qquad where \qquad and \qquad are \qquad and \qquad is \qquad equal to \qquad (
). The integer \qquad is called the \qquad and the integer \qquad is called the \qquad .

Are all integers rational numbers?
Example 2: Consider the following rational numbers: $-\frac{1}{2}, \frac{9}{4},-8,-6 \frac{2}{3}$
Graph each integer in the list on the same number line.

Example 3: Divide

1. $3 \div 8$
2. $3 \div 11$

RATIONAL NUMBERS AND DECIMALS

Any number can be expressed as a \qquad The resulting
decimal will either \qquad), or it will have a digit or block of digits that

IRRATIONAL NUMBERS

Any number that can be represented on the \qquad line that is \qquad a ___ number is called an \qquad number. In other words, the set of irrational numbers is the set of numbers whose \qquad representations are neither \qquad nor \qquad .

THE SET OF REAL NUMBERS
All numbers that can be represented by \qquad on the number line are called \qquad numbers.

THE SETS THAT MAKE UP THE REAL NUMBERS

IRRATIONAL

 NUMBERSExample 4: Consider the following set of numbers: $\left\{-\frac{4}{2}, 8, \frac{1}{3}, \sqrt{100}, 0, \pi, 0.3\right\}$
List the numbers in the set that are

1. Natural numbers
2. Whole numbers
3. Integers
4. Rational numbers
5. Irrational
6. Real numbers numbers

INEQUALITY SYMBOLS

On the real number line, the \qquad numbers \qquad from \qquad
to \qquad The \qquad or two real numbers is the one farther to the on a number line. The \qquad of two real numbers is the
one farther to the \qquad on a number line.

NOTATION

Example 5: Insert < or > between each pair of integers to make the statement true.

1.	3
2.	$3-5$
3.	0
$-3-$	-5

4.

-3 0
3. $-3 _-5$
5.

0 \qquad
6. $-5 _5$

ABSOLUTE VALUE

The \qquad of a real number \qquad denoted is the \qquad from \qquad to \qquad on a number line. Is
the output of an absolute value expression ever negative?

Example 6: Find the absolute value:

1. $|2.5|$
2. $|-8|$

APPLICATIONS

The table below shows the amount spent on iPAD apps by Shannon's family during the months of May and July of 2011.

Name	Amount
Shannon	$\$ 48$
Morgan	$\$ 67$
Rory	$\$ 25$
Erin	$\$ 32$
Nicole	$\$ 12$

1. Graph the five dollar amounts on a number line.
2. Write the names in order from the least spent on apps to the most spent on apps
