Section 1.2: FRACTIONS IN ALGEBRA

When you are done with your homework you should be able to...
π Convert between mixed numbers and improper fractions
π Write the prime factorization of a composite number
π Reduce or simplify fractions
π Multiply fractions
π Divide fractions
π Add and subtract fractions with identical denominators
π Add and subtract fractions with unlike denominators
π Solve problems involving fractions in algebra

WARM-UP:

Evaluate the following algebraic expressions at the given value(s):

1. $\frac{3 x-8}{5(x-1)}, x=4$
2. $6 x-2 y+5, x=0, y=-2$

VOCABULARY
Numerator: The \qquad or \qquad expression that is written the \qquad bar.

Denominator: The \qquad or \qquad expression that is written the \qquad bar.

Natural Numbers: The \qquad that we use for

Mixed Numbers: A \qquad number consists of the of a
number and a \qquad , expressed \qquad
the use of an \qquad .
Improper Fractions: An \qquad
\qquad is a fraction
whose \qquad is \qquad than its \qquad .
such as \qquad .

CONVERTING A MIXED NUMBER TO AN IMPROPER FRACTION

STEPS

1. \qquad the \qquad of the \qquad by the
\qquad number and \qquad the \qquad to this
\qquad
2. Place the \qquad from step 1 \qquad the \qquad of
the \qquad mixed number.

Example 1: Convert the following mixed numerals to improper fractions

1. $5 \frac{7}{8}$
2. $2 \frac{5}{11}$

CONVERTING FROM AN IMPROPER FRACTION TO A MIXED NUMBER

STEPS

2. Write the ___ number using the following form:	

Example 2: Convert the following improper fractions to mixed numerals

1. $\frac{15}{2}$
2. $\frac{24}{7}$

FACTORS AND PRIME FACTORIZATIONS
Fractions can be \qquad by first \qquad the natural
numbers that make up the \qquad and \qquad . To
\qquad a natural number means to write it as two or more
\qquad numbers being \qquad .

VOCABULARY

Prime number: A \qquad number is a \qquad number greater than 1 that has only \qquad and \qquad as \qquad .

Composite numbers: A \qquad number is a \qquad number greater than 1 that is \qquad a \qquad .

EVERY COMPOSITE NUMBER CAN BE EXPRESSED AS THE

\qquad
OF \qquad
\qquad !!!

Expressing a \qquad number as the \qquad of
\qquad numbers is called the \qquad
of that composite number.
Example 3: Find the prime factorization of the following numbers

1. 128
2. 54

REDUCING FRACTIONS

Two fractions are called \qquad if they represent the \qquad
\qquad Writing a fraction as an \qquad
with a \qquad
\qquad is called \qquad
a \qquad . A fraction is \qquad to its \qquad when the \qquad and \qquad have \qquad other than \qquad .

FUNDAMENTAL PRINCIPLE OF FRACTIONS

STEPS

1. Write the \qquad of the
and the \qquad .
2. \qquad the \qquad and the \qquad
by the \qquad (the
product of all factors common to both).

Example 4: Reduce each fraction to its lowest terms

1. $\frac{18}{27}$
2. $\frac{100}{45}$

MULTIPLYING FRACTIONS

The of two or more \qquad is the \qquad of their \qquad divided by the \qquad of their
\qquad .

Example 5: Multiply and reduce each product to its lowest terms

1. $\frac{16}{11} \cdot \frac{33}{2}$
2. $\frac{5}{8} \cdot 12$

DIVIDING FRACTIONS
The \qquad of two \qquad is the \qquad fraction
by the \qquad of the \qquad
fraction.

Example 6: Divide and reduce each quotient to its lowest terms

1. $\frac{25}{32} \div \frac{3}{4}$
2. $\frac{144}{3} \div 12$

ADDING AND SUBTRACTING FRACTIONS WITH IDENTICAL DENOMINATORS

The	or ___ of two ___ with
	is the sum or difference of their
	over the
	$-+-=\square$

Example 7: Perform the indicated operations
2. $\frac{5}{6}+\frac{3}{6}$
2. $\frac{11}{13}-\frac{10}{13}$

ADDING AND SUBTRACTING FRACTIONS WITH UNLIKE DENOMINATORS

The value of a fraction \qquad change if the \qquad
and \qquad are \qquad by the \qquad nonzero
\qquad .

Example 8: Write $\frac{5}{8}$ as an equivalent fraction with a denominator of 32.

The least common denominator is the \qquad number that the numbers in each denominator \qquad into.

STEPS FOR ADDING AND SUBTRACTING FRACTIONS WITH UNLIKE DENOMINATORS

1. \qquad the fractions as
with the \qquad
\qquad .
2. \qquad or \qquad the \qquad putting this
result over the \qquad .

USING PRIME FACTORIZATIONS TO FIND THE LCD

1. Find the \qquad of each \qquad .
2. The \qquad is obtained by using the \qquad number of
times each \qquad occurs in \qquad
factorization.
Example 9: Perform the indicated operations
3. $\frac{23}{7}+\frac{5}{14}$
4. $\frac{5}{12}-\frac{2}{15}$

Example 10: Translate from English to an algebraic expression or equation. Let x represent the variable.

1. A number decreased by one third of itself.
2. The sum of one ninth of a number and one tenth of that number gives 15 .

APPLICATIONS

Shown below is a line from the sheet music for "An Irish Lullaby". The time is $\frac{2}{4}$, which means that each measure must contain notes that add up to $\frac{2}{4}$. Use vertical lines to divide "An Irish Lullaby".

