Section 1.1

When you are done with your homework you should be able to...
π Evaluate algebraic expressions
π Translate English phrases into algebraic expressions
π Determine whether a number is a solution of an equation
π Translate English sentences into algebraic equations
π Evaluate formulas
WARM-UP:
Perform the indicated operation and simplify.

1. $\frac{-(-5)^{3}-5+2}{8(2-11)}$
2. $16 \div 5-1$

EVALUATING ALGEBRAIC EXPRESSIONS

We can \qquad a \qquad that appears in an
\qquad
\qquad by a \qquad . The
is called \qquad the \qquad .

A First Look at Order of Operations

1. Perform all operations \qquad \longrightarrow \qquad
such as \qquad .
2. Do all \qquad in the \qquad in which they occur from
3. Do all \square and \square in the
in which they \qquad from \qquad to \qquad .

Example 1: Find the mistake!

$$
\begin{aligned}
3+2 \div 5 \cdot 10 & =5 \div 5 \cdot 10 \\
& =1 \cdot 10 \\
& =10
\end{aligned}
$$

Example 2: Evaluate the following algebraic expressions at the given value(s):

1. $\frac{2 x+25}{x-1}, x=-2$
2. $\frac{6 x-9 y+1}{y-x}, x=10, y=-4$

KEY WORDS FOR ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION

Example 3: Write each English phrase as an algebraic expression.

1. Six more than a number
2. Twelve less a number
3. Two times the sum of a number and five increased by nine

EQUATIONS

Example 4: Determine whether the given number is a solution of the equation.

1. $x+17=22 ; 5$
2. $5 z=30 ; 8$

Example 5: Write each equation as anglish sentence.

1. $9-3 x=7$
2. $2(x+5)=x-4$

Example 6: Write each sentence as an equation.

1. The difference between forty and a number is ten.
2. The product of six and a number increased by three is thirty-three.

FORMULAS AND MATHEMATICAL MODELS

One aim of \qquad is to provide a compact, \qquad description of the world. These descriptions involve the use of \qquad A
is an \qquad that expresses a \qquad
between two or more \qquad The process of finding formulas to describe \qquad phenomena is called \qquad . Such formulas, together with the \qquad assigned to the \qquad are called \qquad $\underline{ }$

Example 7:
A bowler's handicap, H, is often found using the following formula:
$H=0.8(200-A)$, where A denotes the bowler's average score.

1. If your average bowling score is 145 , what is your handicap?
2. What would your final score be if you bowled 120 in a game?
