ELEMENTARY ALGEBRA GUIDED NOTEBOOK

FOR USE WITH ROBERT
BLITZER'S TEXTBOOK
INTRODUCTORY AND
INTERMEDIATE ALGEBRA
FOR COLLEGE STUDENTS,
3RD ED.

BY SHANNON MARTIN GRACEY

ELEMENTARY ALGEBRA WORKBOOK/FOR USE WITH ROBERT BLITZER'S TEXTBOOK INTRODUCTORY AND INTERMEDIATE ALGEBRA FOR COLLEGE STUDENTS, 3RD ED.

Section 1.1: Introduction to Algebra: Variables and Mathematical ModelsWhen you are done with your homework you should be able to...

- π Evaluate algebraic expressions
- π Translate English phrases into algebraic expressions
- π Determine whether a number is a solution of an equation
- π Translate English sentences into algebraic equations
- π Evaluate formulas

WARM-UP:

Perform the indicated operation and simplify.

1.
$$\frac{-(-5)^3 - 5 + 2}{8(2-11)}$$

2.
$$16 \div 5 - 1$$

EVALUATING ALGEBRAIC EXPRESSIONS

We can	a	that appears in an	
		by a	The
	is called	the	

A First Look at Order of Operations

1.	Perform all operations _		,
	such as	·	
2.	Do all	in the	in which they occur from
	to	·	

 3. Do all ______ and _____ in the _____

 in which they _____ from _____ to ____.

Example 1: Find the mistake!

$$3+2 \div 5 \cdot 10 = 5 \div 5 \cdot 10$$
$$= 1 \cdot 10$$
$$= 10$$

Example 2: Evaluate the following algebraic expressions at the given value(s):

1.
$$\frac{2x+25}{x-1}$$
, $x=-2$

2.
$$\frac{6x-9y+1}{y-x}$$
, $x=10$, $y=-4$

KEY WORDS FOR ADDITION, SUBTRACTION, MULTIPLICATION, AND DIVISION

ADDITION SUBTRACTION MULTIPLICATION DIVISION

Example 3: Write each English phrase as an algebraic expression.

- 1. Six more than a number
- 2. Twelve less a number
- 3. Two times the sum of a number and five increased by nine

EQUATIONS

An is a that two
are What symbol does an equation always
contain?
of an of the
that make the a
statement. To determine whether a number is a,
that number for the and
each side of the equation. If the values on
sides of the, the
is a

Example 4: Determine whether the given number is a solution of the equation.

1.
$$x+17=22$$
; 5

2.
$$5z = 30$$
; 8

Example 5: Write each equation as an English sentence.

1.
$$9-3x=7$$

2.
$$2(x+5) = x-4$$

Example 6: Write each sentence as an equation.

- 1. The difference between forty and a number is ten.
- 2. The product of six and a number increased by three is thirty-three.

FORMULAS AND MATHEMATICAL MODELS

One aim of	of is to provide a compact, description		
of the world. These descriptions involve the use of A			
is an _	that expresses a		
between two or more	The process of find	ing formulas to	
describe phenomena is called			
Such	n formulas, together with the		
assigned to the	, are called	·	

Example 7:

A bowler's handicap, *H*, is often found using the following formula:

H = 0.8(200 - A), where A denotes the bowler's average score.

- 1. If your average bowling score is 145, what is your handicap?
- 2. What would your final score be if you bowled 120 in a game?

Section 1.2: FRACTIONS IN ALGEBRA

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ Convert between mixed numbers and improper fractions
- $\boldsymbol{\pi}$ $\,$ Write the prime factorization of a composite number
- π Reduce or simplify fractions
- π Multiply fractions
- π Divide fractions
- π Add and subtract fractions with identical denominators
- π Add and subtract fractions with unlike denominators
- π Solve problems involving fractions in algebra

WARM-UP:

Evaluate the following algebraic expressions at the given value(s):

2.
$$\frac{3x-8}{5(x-1)}$$
, $x=4$

2.
$$6x-2y+5$$
, $x=0$, $y=-2$

VOCABULARY

	or		expression that is written
the		bar.	
	_ or		_ expression that is written
the		bar.	
The		that we	use for
	the	the or the	or bar. the or bar. the or bar. The that we

Mixed Numbers: A	number consists of the of a
number and a	, expressed
the use of an	·
Improper Fractions: An	is a fraction
whose is	than its
such as	

CONVERTING A MIXED NUMBER TO AN IMPROPER FRACTION

STEPS

1		the	of the	by the
		_ number and	_ the	_ to this
-				
2. 1	Place the	from step 1	the	of
	the	mixed number.		

Example 1: Convert the following mixed numerals to improper fractions

1.
$$5\frac{7}{8}$$

2.
$$2\frac{5}{11}$$

CONVERTING FROM AN IMPROPER FRACTION TO A MIXED NUMBER

STEPS

- 1. ______ the _____ into the _____. Record the _____ (result of the division) and the _____.
- 2. Write the _____ number using the following form:

Example 2: Convert the following improper fractions to mixed numerals

1.
$$\frac{15}{2}$$

2.
$$\frac{24}{7}$$

FACTORS AND PRIME FACTO	ORIZATIONS	
Fractions can be	by first	the natural
numbers that make up the	and	To
a natural nu	mber means to write it as	s two or more
numbers	being	·
VOCABULARY		
Prime number: A	number is a	number greater
than 1 that has only	and as	·
Composite numbers: A	number is a	number
greater than 1 that is	a	
EVERY COMPOSITE NUMBER	CAN RE EYDDESSED A	AS THE
OF		.5 IIIL
Expressing a	number as the	of
numbers is calle	d the	

2. 54

Example 3: Find the prime factorization of the following numbers

of that composite number.

1. 128

REDUCING	FRACTIONS	

Two fraction	ns are called	if they represent the _	
	Writing a fraction as a	ın	
with a		is called	
a	A fraction is	to its	
	when the	and	have
		other than	
FUNDAMEN	ITAL PRINCIPLE OF FRA	CTIONS	
The	of a		if
both the	and	are	
(or) by the	nonzero	·
		=	
STEPS			
1. Write	the	of the	
and the	e		
2	the	and the	

by the ______ _____

CREATED BY SHANNON MARTIN GRACEY

product of all factors common to both).

_ (the

Example 4: Reduce each fraction to its lowest terms

1.
$$\frac{18}{27}$$

2.
$$\frac{100}{45}$$

MULTIPLYING FRACTIONS

The	of two or more	is the
of their	divided by the	of their
	—·—=——	

Example 5: Multiply and reduce each product to its lowest terms

1.
$$\frac{16}{11} \cdot \frac{33}{2}$$

2.
$$\frac{5}{8}$$
·12

DIVIDING FRACTIONS

The _____ of two ____ is the ____ fraction ____ by the ____ of the ____

fraction.

Example 6: Divide and reduce each quotient to its lowest terms

1.
$$\frac{25}{32} \div \frac{3}{4}$$

2.
$$\frac{144}{3} \div 12$$

ADDING AND SUBTRACTING FRACTIONS WITH IDENTICAL DENOMINATORS

The _______ of two ______ with _____ is the sum or difference of their _____ over the ______.

-+-=---- and ---=----

Example 7: Perform the indicated operations

1.
$$\frac{5}{6} + \frac{3}{6}$$

$$2. \quad \frac{11}{13} - \frac{10}{13}$$

ADDING AND SUBTRACTING FRACTIONS WITH UNLIKE DENOMINATORS

The value of a fraction _____ change if the ____ and ____ by the ____ nonzero

____.

Example 8: Write $\frac{5}{8}$ as an equivalent fraction with a denominator of 32.

The <u>least common denominator</u> is the _____ number that the numbers in each denominator ____ into.

STEPS FOR ADDING AND SUBTRACTING FRACTIONS WITH UNLIKE DENOMINATORS

 1. ______ the fractions as _______.

 with the _______.

 2. ______ or _____ the ________, putting this

USING PRIME FACTORIZATIONS TO FIND THE LCD

result over the _______

- 1. Find the _____ of each _____.
- 2. The ______ is obtained by using the ______ number of times each _____ occurs in ______ factorization.

Example 9: Perform the indicated operations

1.
$$\frac{23}{7} + \frac{5}{14}$$

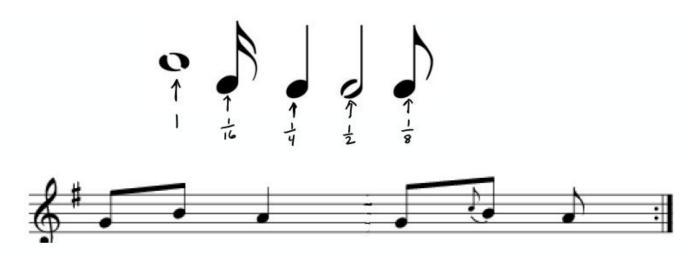
2.
$$\frac{5}{12} - \frac{2}{15}$$

Example 10: Translate from English to an algebraic expression or equation. Let x represent the variable.

- 1. A number decreased by one third of itself.
- 2. The sum of one ninth of a number and one tenth of that number gives 15.

APPLICATIONS

Shown below is a line from the sheet music for "An Irish Lullaby". The time is $\frac{2}{4}$, which means that each measure must contain notes that add up to $\frac{2}{4}$. Use vertical lines to divide "An Irish Lullaby".



Section 1.3: THE REAL NUMBERS

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ Define the sets that make up the real numbers
- $\boldsymbol{\pi}$ Graph numbers on a number line
- π Express rational numbers as decimals
- π Classify numbers as belonging to one or more sets of the real numbers
- π Understand and use inequality symbols
- π Find the absolute value of a real number

WARM-UP:

Perform the indicated operation and simplify:

1.
$$\frac{10}{27} \cdot \frac{3}{2}$$

2.
$$\frac{28}{9} + \frac{2}{3}$$

NATURAL NUMBERS AND WHOLE NUMBERS

A ______ is a _____ of objects whose contents can be clearly determined. The objects in a set are called the _____ of the set.

Natural numbers: The _____ of ____ numbers is

Whole numbers: The ______ of _____ numbers is

INTEGERS AND THE NUMBER LINE

The _____ consisting of the _____ numbers, _____,

and the _____ of the ____ numbers is called the set

of _____.

Integers: The _____ of ____ is

Example 1: Consider the following integers: 3, -3, 5, -5, 0

Graph each integer in the list on the same number line.



RATIONAL NUMBERS

If two _____ are added, subtracted, or multiplied, the result is always

another _____. Is this true when one integer is divided by another?

The set of _____ numbers is the set of all numbers that can be

expressed in the form _____, where ____ and ___ are ____

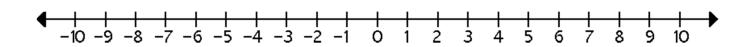
and _____ is _____ equal to ____ (______). The integer ____ is called

the _____ and the integer ____ is called the _____.

Are all integers rational numbers?

Example 2: Consider the following rational numbers: $-\frac{1}{2}$, $\frac{9}{4}$, -8, $-6\frac{2}{3}$

Graph each integer in the list on the same number line.



Example 3: Divide

RATIONAL NUMBERS AND DECIMALS

Any ______ number can be expressed as a ______. The resulting decimal will either _____ (_____), or it will have a digit or block of digits that _____.

IRRATIONAL NUMBERS

Any number that can be represented on the	line that is		
a number is called an	number.In		
other words, the set of irrational numbers is the set of numbers whose			
representations are neither	nor		

THE SET OF REAL NUMBERS

All numbers that can be	represented by	on the number	line are
called	numbers.		

THE SETS THAT MAKE UP THE REAL NUMBERS

NAME	DESCRIPTION	EXAMPLES
NATURAL		
NUMBERS		
WHOLE		
NUMBERS		
INTEGERS		

RATIONAL	
NUMBERS	
IRRATIONAL	
NUMBERS	

Example 4: Consider the following set of numbers: $\left\{-\frac{4}{2}, 8, \frac{1}{3}, \sqrt{100}, 0, \pi, 0.3\right\}$

List the numbers in the set that are

- 1. Natural numbers
- 2. Whole numbers
- 3. Integers

- 4. Rational numbers
- 5. Irrational numbers

6. Real numbers

INEQUALITY SYMBOLS

On the real number line, the _	numbers	from
to The	or two real numbers is t	he one farther to the
on a number line.	The of tw	wo real numbers is the
one farther to the	on a number line.	

NOTATION

Example 5: Insert < or > between each pair of integers to make the statement true.

- 1. 3 _____ 5 2. 3 ____ 0

- -3____ 0 4.
- 5. 0 ____-3
- -5____ 5

ABSOLUTE VALUE

The	, denoted	
, is the	from to on a number line. Is	
the output of an absolute value ex	pression ever negative?	

Example 6: Find the absolute value:

1. |2.5|

2. $\left|-8\right|$

APPLICATIONS

The table below shows the amount spent on iPAD apps by Shannon's family during the months of May and July of 2011.

Name	Amount
Shannon	\$48
Morgan	\$67
Rory	\$25
Erin	\$32
Nicole	\$12

- 1. Graph the five dollar amounts on a number line.
- 2. Write the names in order from the least spent on apps to the most spent on apps

Section 1.4: BASIC RULES OF ALGEBRA

When you are done with your homework you should be able to...

- π Understand and use the vocabulary of algebraic expressions
- π Use commutative properties
- π Use associative properties
- π Use distributive properties
- π Combine like terms
- π Simplify algebraic expressions

WARM-UP:

Perform the indicated operation and simplify:

1.
$$\frac{57}{4} \div \frac{3}{2}$$

2.
$$\frac{3}{14} - \frac{1}{10}$$

VOCABULARY OF ALGEBRAIC EXPRESSIONS

Constant term: A term that consists of	st a is called a
Like terms: Terms that have the	the
	are called
Are constant terms like terms?	

Example 1: Consider the following algebraic expression: -12x+9+7x-8

- 1. How many terms are there in the algebraic expression?
- 2. What is the coefficient of the first term?
- 3. List the constant term(s):
- 4. What are the like terms in the algebraic expression?

EQUIVALENT ALGEBRAIC EXPRESSIONS

Example 2: Evaluate the following two algebraic expressions at x = 2.

1.
$$-12x+9+7x-8$$

2.
$$-5x+1$$

Example 1: Consider the following algebraic expression: -12x+9+7x-8

- 5. How many terms are there in the algebraic expression?
- 6. What is the coefficient of the first term?
- 7. List the constant term(s):
- 8. What are the like terms in the algebraic expression?

EQUIVALENT ALGEBRAIC EXPRESSIONS

Example 2: Evaluate the following two algebraic expressions at x = 2.

1.
$$-12x+9+7x-8$$

2.
$$-5x+1$$

THE COMMUTATIVE PROPERTIES		
Let a and b represent real nu	umbers, variables, or algebraic expressions.	
Commutative Property of A	ddition:	
Changing	en adding does not affect the	
	en adding does not affect the	
Commutative Property of M	<u>ultiplication</u> :	
Changing wh	en multiplying does not affect the	
Example 3: Use the commuta equivalent to each of the following	tive property to write an algebraic expression lowing:	
1. $2x + 4$	2. <i>x</i> ·13	

THE ASSOCIATIVE PROPERTIES

Let a, b, and c represent real numbers, variables, or algebraic expressions.

Associative Property of Addition:

Changing _____ when adding does not affect the _____.

Associative Property of Multiplication:

Changing _____ when multiplying does not affect the _____.

Example 4: Use the associative property to simplify the algebraic expressions:

1.
$$4x + (7 + x)$$

2.
$$25(4x)$$

THE DISTRIBUTIVE PROPERTY

Let a, b, and c represent real numbers, variables, or algebraic expressions.

Multiplication _____ over _____.

Example 5: Multiply:

1.
$$3(x+5)$$

2.
$$-(4+x)$$

OTHER FORMS OF THE DISTRIBUTIVE PROPERTY

PROPERTY	MEANING	EXAMPLES
a(b-c) $= ab - ac$		
=ab-ac		
a(b+c+d)		
a(b+c+d) $=ab+ac+ad$		
(b+c)a		
(b+c)a $=ba+ca$		

COMBINING LIKE TERMS

The _____ property lets us _____ and ____ like terms.

Example 6: Combine like terms:

1.
$$3(4x)+(-x+21)$$

2.
$$9x + (x+5) - 2(-x+11+3y)$$

STEPS FOR SIMPLIFYING ALGEBRAIC EXPRESSIONS

- 1. Use the ______ property to remove ______.
- 2. Rearrange terms and ______ terms using the

_____ and _____ properties. As you

hone your skills, you'll be doing this step mentally!

3. Combine	terms by combining the	
of the	and keeping the same	·

APPLICATIONS

The percentage of U.S. women, W, who used the internet n years after 2000 can be modeled by the formula W = 2(2n+25)+0.5(n+2).

1. Simplify the formula.

2. Use the simplified form of the mathematical model to find the percentage of U.S. women who used the internet in 2005.

Section 1.5: ADDITION OF REAL NUMBERS

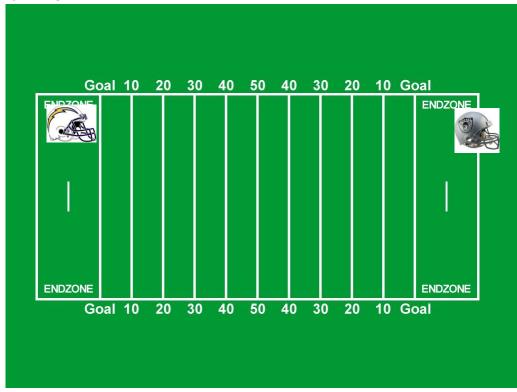
When you are done with your 1.5 homework you should be able to...

- π Add numbers with a number line
- π Find sums using identity and inverse properties
- π Add numbers without a number line
- π Use addition rules to simplify algebraic expressions
- π Solve applied problems using a series of addition

WARM-UP:

It is a Sunday during the fall semester. You are watching the Chargers/Raider game. The Chargers are currently on their own 30 yard line. During the first down that the Chargers have possession of the ball, the Chargers complete a pass for a gain of ten yards. On the second down, the Raiders sack the Chargers' quarterback, causing a loss of 10 yards.

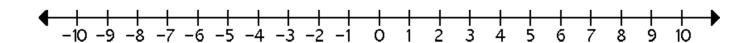
a. Use the image of the football field shown below to model the gain and loss of yardage.



b. How would you use signed numbers to represent the ten yard gain?

c. How would you use signed numbers to represent the ten yard loss? d. What is the net yardage gained?

e. How can we use the number line below to model 10 + (-10)?



f. Based on the information above, we can conclude that a number and its

_____sum to _____.

IDENTITY AND INVERSE PROPERTIES OF ADDITION

PROPERTY	MEANING	EXAMPLES
IDENTITY PROPERTY OF ADDITION		
INVERSE PROPERTY OF ADDITION		

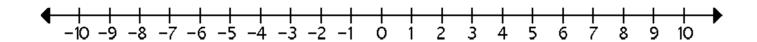
ADDING INTEGERS

NUMBER LINE MODELS

POSITIVE/NEGATIVE CHIP MODEL

Example 1: Illustrate 4+2 using

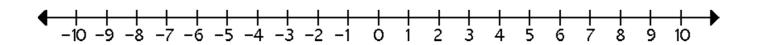
a. A number line



- b. The positive/negative chip method
- c. So the "rule" for a positive plus a positive is...

Example 2: Illustrate -2+(-3) using

a. A number line

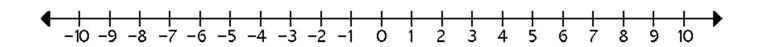


b. The positive/negative chip method

c. So the "rule" for a negative plus a negative is...

Example 3: Illustrate -10+6 using

a. A number line

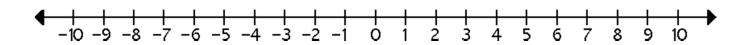


b. The positive/negative chip method

c. So the "rule" for a negative plus a positive is...

Example 4: Illustrate 1+(-7) using

a. A number line



b. The positive/negative chip method

c. So the "rule" for a positive plus a negative is...

SIMPLIFYING ALGEBRAIC EXPRESSIONS

Example 5: Simplify.

a.
$$-9x + (-4x)$$

b.
$$-6y + 22y - 5$$

APPLICATIONS

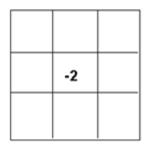
Example 6:

In a magic square, all the rows, all the columns and the 2 diagonals must add to the same number.

1. Complete the magic square, using only the positive integers 1 to 9:

	1	
4	9	2

2. Complete the magic square, using only the integers:



Example 7: In high school, an elementary algebra class meets five hours a week for nine months. At MiraCosta College, an elementary algebra class meets five hours a week for 4 months. The class at MiraCosta College has how many fewer in-class hours?

MIXED PRACTICE

1. Fill in the blank.

a. 5 is the _____ of -5.

b. On a number line, the greater number is to the _____ of the lesser number.

c. A number's distance from zero on a number line is the number's _____

____.

d. Numbers less than zero are called _____ numbers.

e. When using an inequality symbol, the "arrow" points towards the

_____ number.

2. Add.

a.
$$-18 + (-26) + 100 + 34$$

c.
$$12^2 - 24 \div 6$$

b.
$$-18+2(51-6)+100(-15+670)$$

d.
$$\frac{30 + (-8)}{2(176 - 175)}$$

Section 1.6: SUBTRACTION OF REAL NUMBERS

When you are done with your homework you should be able to...

- π Subtract real numbers
- π Simplify a series of additions and subtractions
- π Use the definition of subtraction to identify terms
- π Use the subtraction definition to simplify algebraic expressions
- π Solve problems involving subtraction

WARM-UP:

Simplify:

1.
$$\frac{1}{2}(2x-7)+3x$$

2.
$$-(-x+5)+3(2)(5x-1)$$

DEFINITION OF SUBTRACTION

For all real numbers a and b,

To subtract _____ from ____, ____ the _____ (or additive

inverse) of _____ to ____. The result of subtraction is called the

A PROCEDURE FOR SUBTRACTING REAL NUMBERS

- 1. Change the subtraction operation to ______.
- 2. Change the _____ of the number being _____.
- 3. _____

Example 1: Subtract.

1.
$$-16-(-9)$$

$$3. -6 - 32$$

$$2.16-20$$

4.
$$10.2 - 0.2 - (-5.1)$$

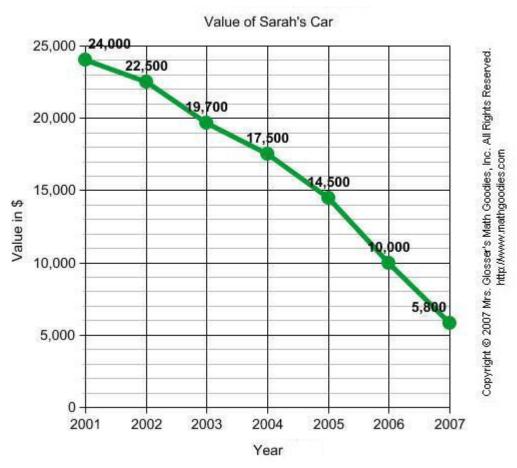
Example 2: Simplify.

1.
$$3(4x)-(2x-21)$$

2.
$$9x + (x+5) - 2(x-11+3y)$$

APPLICATIONS

The line graph below illustrates the value of Sarah's car in dollars from the year 2001 to the year 2007.



1. How much was Sarah's car worth in 2005?

2. How much more was Sarah's car worth in 2002?

Section 1.7: MULTIPLICATION AND DIVISION OF REAL NUMBERS

When you are done with your homework you should be able to...

- π Multiply real numbers
- π Multiply more than two real numbers
- π Find multiplicative inverses
- π Use the definition of division
- π Divide real numbers
- $\boldsymbol{\pi}$ $\,$ Simplify algebraic expressions involving multiplication
- π Determine whether a number is a solution of an equation
- π Use mathematical models involving multiplication and division

WARM-UP:

1. Find the value of each expression:

a.
$$\frac{9}{10} - \left(\frac{1}{4} - \frac{7}{10}\right)$$

b.
$$-|-8-(-2)|-(-6)$$

- 2. Write each English phrase as an algebraic expression. Let *x* represent the number:
 - a. The difference between 9 times a number and -4 times a number

b. The quotient of -7 and a number subtracted from the quotient of -12 and a number

THE PRODUCT OF TWO REAL NUMBERS

 π The _____ of two real numbers with _____ signs is

found by _____ their ____ values. The

product is ______.

 π The _____ of two real numbers with the _____ sign is

found by _____ values. The

product is ______.

 π The _____ of zero and any real number is _____.

Example 1: Multiply.

$$-15(5)$$

$$(-11)(-12)$$

4.
$$\frac{4}{3} \cdot 0$$

MULTIPLYING MORE THAN TWO NUMBERS

1. Assuming that no factor is zero,

 π The _____ of an ____ number of ____

numbers is ______.

 π The _____ of an ____ number of ____

numbers is ______.

2. If any _____ is ____, the product is ____.

Example 2: Multiply.

$$3. -7(5)(-6) \cdot 2$$

4.
$$(13)(-1)(-\frac{5}{2})(-8)$$

THE MEANING OF DIVISION

The result of ______ the real number ____ by the nonzero real number ____ is called the _____ of ___ and ____. We can write this _____ as ____ or ____. We can define division in terms of _____ by using _____ inverse or

Example 3: Find the multiplicative inverse of each number.

- 1. 12
- 2. $-\frac{1}{4}$
- 3. $-\frac{7}{8}$

DEFINITION OF DIVISION

If a and b are real numbers and b is not equal to zero, then the ______
of ____ and ____ is defined as

The ______ of two real numbers is the _____ of the _____ of the _____ of the ____ number and the _____ of the _____ number.

Example 4: Divide using the definition of division.

1.
$$5 \div \frac{1}{5}$$

2.
$$\frac{-123}{-3}$$

THE QUOTIENT OF TWO REAL NUMBERS

 π The _____ of two real numbers with _____ signs is

found by _____ their ____ values. The

quotient is ______.

 π The _____ of two real numbers with the _____ sign is

found by _____ their ____ values. The

quotient is ______.

- π Division of any real number by _____ is _____.
- π Any nonzero number divided into _____ is _____.

Example 5: Divide.

1.
$$-\frac{2}{5} \div \frac{1}{10}$$

3.
$$\frac{123}{-3}$$

2.
$$\frac{0}{123}$$

$$4. -1.8 \div (-0.6)$$

ADDITIONAL PROPERTIES OF MULTIPLICATION

PROPERTY	MEANING	EXAMPLES
IDENTITY PROPERTY OF MULTIPLICATION		
INVERSE PROPERTY OF MULTIPLICATION		
MULTIPLICATION PROPERTY OF -1		
DOUBLE NEGATIVE PROPERTY		

NEGATIVE SIGNS AND PARENTHESIS

lfa	sign precedes parentheses, _		the
parentheses and	the	_ of	
	within the parentheses.		

Example 6: Simplify.

1.
$$-4(-3x+2)$$

2.
$$5(3y-1)-(14y-2)$$

APPLICATIONS

Use the formula $C = \frac{5}{9}(F - 32)$ to express each Fahrenheit temperature, F, as its equivalent Celsius temperature, C.

1.
$$-13^{\circ}$$
 F

Section 1.8: EXPONENTS AND ORDER OF OPERATIONS

When you are done with your homework you should be able to...

- π Evaluate exponential expressions
- $\boldsymbol{\pi}$ $\,$ Simplify algebraic expressions with exponents
- π Use the order of operations agreement
- π Evaluate mathematical models

WARM-UP:

1. Determine whether the given number is a solution of the equation.

$$\frac{5m-1}{6} = \frac{3m-2}{4}$$
; -4

- 2. Write a numerical expression for each phrase. Then simplify the numerical expression.
 - a. 14 added to the product of 4 and -10

b. The quotient of -18 and the sum of -15 and 12

DEFINITION OF A NATURAL NUMBER EXPONENT

If b is a real number and n is a natural number,

_____ is read "the _____ of ___ of ___ " or "___ to the ____ power. The expression ____ is called an _____.

Example 1: Evaluate.

1.
$$(-5)^3$$

$$(-12)^2$$

ORDER OF OPERATIONS

- 1. Perform all _____ within ____ symbols
- 2. Evaluate all ______ expressions.
- 3. Do all _____ and ____ in the order

in which they occur, working from ______ to _____.

- 4. Finally, do all _____ and ____ using one of the following procedures:
 - π $\,$ Work from _____ to ____ and do additions and

subtractions in the _____ in which they occur.

or

 π Rewrite subtractions as ______ of _____

Combine _____ and ____ numbers

separately, and then _____ these results.

Example 2: Simplify.

$$1. \quad 40 \div 4 \cdot 2$$

3.
$$(3.5)^2 - 3.5^2$$

2.
$$\frac{-5(7-2)-3(4-7)}{-13-(-5)}$$

$$4. \left[-\frac{4}{7} - \left(-\frac{2}{5} \right) \right] \left[-\frac{3}{8} + \left(-\frac{1}{9} \right) \right]$$

Example 3: Simplify each algebraic expression.

1.
$$-6x^2 + 18x^2$$

2.
$$4(7x^3-5)-[2(8x^3-1)+1]$$

3.
$$6-5[8-(2y-4)]$$

APPLICATIONS

In Palo Alto, CA, a government agency ordered computer-related companies to contribute to a pool of money to clean up underground water supplies. (The companies had stored toxic chemicals in leaking underground containers). The mathematical model $C = \frac{200x}{100-x}$ describes the cost, C, in tens of thousands of dollars, for removing x percent of the contaminants.

1. Find the cost, in tens of thousands of dollars, for removing 50% of the contaminants.

2. Find the cost, in tens of thousands of dollars, for removing 60% of the contaminants.

3. Describe what is happening to the cost of the cleanup as the percentage of contaminant removed increases.

Section 2.1: THE ADDITION PROPERTY OF EQUALITY

When you are done with your homework you should be able to...

- π I dentify linear equations in one variable
- π Use the addition property of equality to solve equations
- π Solve applied problems using formulas

WARM-UP:

Simplify:

1.
$$\frac{1}{2} - \frac{2}{3} \div \frac{5}{9} + \frac{3}{10}$$

$$2. \quad -40 \div 5 \cdot 2$$

LINEAR EQUATIONS IN ONE VARIABLE

In Chapter 1, we learned that an	is a statement that two
expressions are	We determined
whether a given number is an equation's	by substituting that
number for each occurrence of the	When the
resulted in a true	statement, that was
a When the subst	ituted number resulted in a
statement that number v	was a

VOCABULARY		
Solving an equation: The	of finding the	(or
) that make the	equation a state	ement. These
numbers are called the	or c	of the equation,
and we say that they	the equation.	
DEFINITION OF A LINEAR EQUA	TION IN ONE VARIABLE	
A	_ in	is
an equation that can be written in the	e form	
where,, and are rea	I numbers, and	
Example 1: Give three examples of a I	inear equation in one variable	<u>)</u> .
1.		
2.		
2.3.		
	nlinear equation in one variab	ole.
3.	nlinear equation in one variab	ole.
3. Example 2: Give two examples of a no	nlinear equation in one variab	ole.

VOCABULARY

Equivalent equations: Equations that have the ______ solution are ______.

THE ADDITION PROPERTY OF EQUALITY

The _____ real number or _____ expression may be _____ to ____ sides of an _____ without changing the equation's _____. That is,

Example 3: Solve the following equations. Check your solutions.

1.
$$y-5=-18$$

4.
$$-\frac{1}{8} + x = -\frac{1}{4}$$

2.
$$18 + z = 14$$

5.
$$-3x-5+4x=9$$

3.
$$x+10.6=-9$$

6.
$$7x+3=6(x-1)+9$$

ADDING AND SUBTRACTING VARIABLE TERMS ON BOTH SIDES OF AN EQUATION

Our goal is to	all the	terms on one side of
the equation. We can use the		of
to do this.		

APPLICATIONS

1. The cost, C, of an item (the price paid by a retailer) plus the markup, M, on that item (the retailer's profit) equals the selling price, S, of the item. The formula is C+M=S.

The selling price of a television is \$650. If the cost to the retailer for the television is \$520, find the markup.

2. What is the difference between solving an equation such as 5y+3-4y-8=6+9 and simplifying an algebraic expression such as 5y+3-4y-8?

Section 2.2: THE MULTIPLICATION PROPERTY OF EQUALITY

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ Use the multiplication property of equality to solve equations
- π Solve equations in the form of -x = c
- π Use the addition and multiplication properties to solve equations
- π Solve applied problems using formulas

WARM-UP:

Solve:

1.
$$5z-12=z+8$$

2.
$$x = -7(2-x)+18$$

THE MULTIPLICATION PROPERTY OF EQUALITY

The _____ real number or _____
expression may _____ sides of an _____
without changing the _____. That is,

Example 1: Solve the following equations. Check your solutions.

1.
$$-5z = -20$$

4.
$$-\frac{1}{8}x = 6$$

2.
$$-51 = -y$$

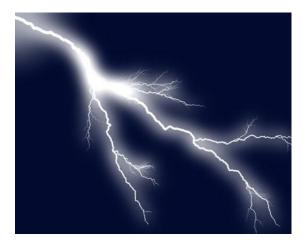
5.
$$6z-3=z+2$$

3.
$$8x - 3x = -45$$

6.
$$5y+6=3y-6$$

APPLICATIONS

The formula $M = \frac{n}{5}$ models your distance, M, from a lightning strike in a thunderstorm if it takes n seconds to hear thunder after seeing the lightning.



If you are three miles away from the lightning flash, how long will it take the sound of thunder to reach you?

Section 2.3: SOLVING LINEAR EQUATIONS

When you are done with your homework you should be able to...

- π Solve linear equations
- π Solve linear equations containing fractions
- π Identify equations with no solution or infinitely many solutions
- π Solve applied problems using formulas

WARM-UP:

Solve:

1.
$$-12z = 144$$

2.
$$-x = -7x + 24$$

A STEP-BY-STEP PROCEDURE FOR SOLVING LINEAR EQUATIONS

1. _____ the ____ on each side.

2. Collect all the _____ terms on one side and all the

_____terms on the other side.

3. _____ the _____ and _____.

4. _____ the proposed solution in the _____ equation.

Example 1: Solve the following equations. Check your solutions.

1.
$$-z - 34 + 10z = 2 + 10z - 54$$

4.
$$3(x+2) = x+30$$

2.
$$20 = 44 - 8(2 - x)$$

5.
$$2(x-15)+3x=(6+4x)-(9x-2)$$

3.
$$5x-4(x+9)=2x+3$$

6.
$$100 = -(x-1) + 4(x-6)$$

LINEAR EQUATIONS WITH FRACTIONS

Equations are _______ to solve when they do not contain ______. To remove fractions, we can ______ ____ sides of the equation by the ______ __ is the _____ is the _____ number that all _____ will _____ into. This is often called "_____ an equation of _____ ".

Example 2: Solve the following equations. Clear the fractions first. Check your solutions.

1.
$$\frac{x}{2} + 13 = -22$$

3.
$$\frac{3y}{4} - \frac{2}{3} = \frac{7}{12}$$

$$2. \ \frac{z}{5} - \frac{1}{2} = \frac{z}{6}$$

4.
$$\frac{x-2}{3}-4=\frac{x+1}{4}$$

RECOGNIZING INCONSISTENT EQUATIONS AND IDENTITIES

If you attempt to _______ an equation with ______ or

one that is ______ for _____ real number, you will ______

______ the ______.

π An ______ equation with _____ results in _____

a ______ statement, such as ______.

 π An _____ that is ____ for ____ real number results in a _____ statement, such as _____.

Example 3: Solve the following equations. Use words or set notation to identify equations that have no solution, or equations that are true for all real numbers. Check your solutions.

1.
$$2(x-5) = 2x+10$$

3.
$$\frac{x}{2} + \frac{2x}{3} + 3 = x + 3$$

2.
$$5x-5=3x-7+2(x+1)$$

4.
$$\frac{x}{4} + 3 = \frac{x}{4}$$

APPLICATIONS

The formula $p = 15 + \frac{5d}{11}$ describes the pressure of sea water, p, in pounds per square foot, at a depth of d feet below the surface.

1. The record depth for breath-held diving, by Francisco Ferreras (Cuba) off Grand Bahama I sland, on November 14, 1993, involved pressure of 201 pounds per square foot. To what depth did Francisco descend on this venture? (He was underwater for 2 minutes and 9 seconds!)

2. At what depth is the pressure 20 pounds per square foot?

Section 2.4: FORMULAS AND PERCENTS

When you are done with your homework you should be able to...

- π Solve a formula for a variable
- π Express a percent as a decimal
- π Express a decimal as a percent
- π Use the percent formula
- π Solve applied problems involving percent change

WARM-UP:

Solve:

1.
$$4 = 0.25B$$

2.
$$1.3 = P \cdot 26$$

SOLVING A FORMULA FOR ONE OF ITS VARIABLES

Solving a formula for a variable	le means	the
so that the	is	on one side of the
equation. To solve a formula for	or one of its variab	les, treat that
as if it were the only	in the _	·
PERIMETER		
The of a _		figure is the
of the	of its	Perimeter is measured
in units, such a	as	
or		

PERIMETER OF A RECTANGLE

The perimeter,	, of a rectangle with ler	igth	_ and width	is given
by the formula				

SQUARE UNITS

A	_unit is a	each of whose sides is	_ unit
in length. The	of a	figure is the	
number of		it takes to fill the interior of th	he
figure.			

AREA OF A RECTANGLE

The area,, of a rectangle with length _	and width is given by	/
the formula		

Example 1: Solve the following formulas for the specified variable.

1.
$$d = rt$$
; t

2.
$$P = C + MC$$
; C

or sileet.			
1. Find the length.		2. Find the perimeter.	
BASICS OF PERCENTS			
are the	result of	numbers as	
of The word	l	means	·
PERCENT NOTATION			
means			
STEPS FOR EXPRESSING 1. Move the		A DECIMAL NUMBER places to the	
2. Remove the	sign.		
Example 3: Express each p	ercent as a decim	al.	
1. 9.5%		2. 235%	

Example 2: Consider a rectangle which has an area of 15 square feet and a width

STFDS	FOR	EXPRESSING	Δ	DECLMAL	MIIMRER	Δς Δ	PERCENIT
JIEFJ	FUR	EXPRESSING	М	DECLIVIAL	INDIVIDER	AJ A	PERCEIVI

1. Move the	point	place	es to the
2. Attach a	sign.		
Example 4: Express each	decimal as a perce	nt.	
1. 1.75		2. 0.01	
A FORMULA INVOLVIN	IG PERCENT		
are	useful in comparir	ig two	To
the nu	ımber to th	e number	using a percent
, the following form	ula is used:		
Example 5: Solve.			
1. What is 12% of 50?	2. 6 is 30%	of what?	3. 200 is what

APPLICATIONS

- 1. The average, or mean, A, of four exam grades, x, y, z, and w, is given by the formula $A = \frac{x + y + z + w}{4}$.
 - a. Solve the formula for w.

b. Use the formula in part (a) to solve this problem: On your first three exams, your grades are 76%, 78%, and 79%: x = 76, y = 78, and z = 79. What must you get on the fourth exam to have an average of 80%?

2.	A charity has raised \$225,000, with a goal of raising \$500,000. What percent of the goal has been raised?
3.	Suppose that the local sales tax rate is 7% and you buy a graphing calculator for \$96. a. How much tax is due?
	b. What is the calculator's total cost?
4.	The price of a color printer is reduced by 30% of its original price. When it still does not sell, its price is reduced by 20% of the reduced price. The salesperson informs you that there has been a total reduction of 50%. Is the salesperson using percentages properly? If not, what is the actual percent reduction from the original price?

Section 2.5: AN INTRODUCTION TO PROBLEM SOLVING

When you are done with your homework you should be able to...

- π Translate English phrases into algebraic expressions
- π Solve algebraic word problems using linear equations

WARM-UP:

Solve:

A fax machine regularly sells for \$380. The sale price is \$266. Find the percent decrease in the machine's price.

STEPS FOR SOLVING WORD PROBLEMS

OTELO TOR GOLITICO ITORO TRODELINO	
1. Analysis: READ the problem. Then,	the problem again!!!
Draw a and/or make a	I dentify
and name all known and unknown	
2. Translate to Mathese: Write an equation that transl	ates, or,
the conditions of the problem.	
3. Solve: the equation. Then	your
solution.	
4. Conclusion: Write your result, in	<u> </u>

Example 1: Solve the following word problems.

1. The sum of a number and 28 is 245. Find the number.

2. Three times the sum of five and a number is 48. Find the number.

3. Eight subtracted from six times a number is 298. Find the number.

4.	If the quotient of three times a number and four is decreased by three, the result is nine. Find the number.
5	A car rental agency charges \$180 per week plus \$0.25 per mile to rent a car
Ο.	How many miles can you travel in one week for \$395?

6.	A basketball court is a rectangle with a perimeter of 86 meters. The length
	is 13 meters more than the width. Find the width and length of the
	basketball court.

7. This year's salary, \$42,074, is a 9% increase over last year's salary. What was last year's salary?

8.	A repair bill on a sailboat came to \$1603, including \$532 for parts and the remainder for labor. If the cost of labor is \$35 per hour, how many hours of labor did it take to repair the sailboat?

Section 2.6: PROBLEM SOLVING IN GEOMETRY

When you are done with your homework you should be able to...

- π Solve problems using formulas for perimeter and area
- π Solve problems using formulas for a circle's area and circumference
- π Solve problems using formulas for volume
- π Solve problems involving the angles of a triangle
- π Solve problems involving complementary and supplementary angles

WARM-UP:

Solve:

After a 30% reduction, you purchase a DVD player for \$98. What was the selling price before the reduction?

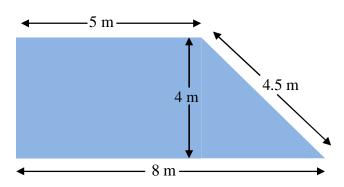
COMMON FORMULAS FOR PERIMETER AND AREA

Example 1: Solve.

1. A triangle has a base of 6 feet and an area of 30 square feet. Find the triangle's height.

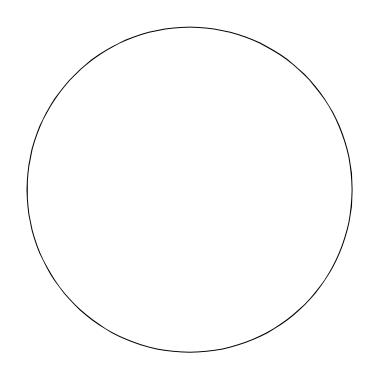
2. A rectangle has a width of 46 cm and a perimeter of 208 cm. What is the rectangle's length?

3. Find the area of the trapezoid.



GEOMETRIC FORMULAS FOR CIRCUMFERENCE AND AREA OF A CIRCLE

A	is the set of all		in the	
equally distant fr	om a given point, its	A		
(plural	, is a line	<u> </u>	from the	
	to any point on the	F	or a given circle,	
rad	lii have the same	A		
, is a	segment through the		whose endpoints	
both lie on the	For a give	en circle, all	hav	/e
the	length. In any circle, t	he length of a		is
	the length of a	and the	length of a	
	is the	e length of a		



Area Circumference

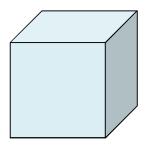
Example 2: Solve.

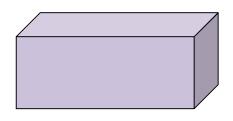
1. Find the area and circumference of a circle which has a diameter of 40 feet.

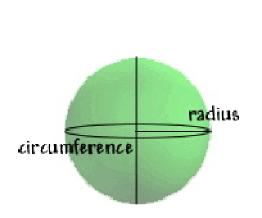
2. Which one of the following is a better buy: a large pizza with a 16-inch diameter for \$12 or two small pizzas, each with a 10-inch diameter, for \$12?

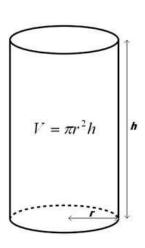
GEOMETRIC FORMULAS FOR VOLUME

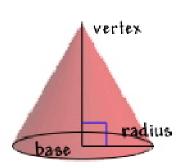
refers to the a	mount of occupied by a
-	figure. To measure this space, we use
units.	











Example 3: Solve.

1. Solve the formula for the volume of a cone for h.

How many times	radius 2 inches and s greater is the volue?	_		-
smaller cylinder	•			
3. Find the volume	e of a shoebox with	dimensions 6	in x 12 in x 5 in.	
THE ANGLES OF T	RIANGLES			
An	_, symbolized by _	, is	made up of two .	
that have a common _		The commor	n endpoint is call	ed the
·	The two rays that	form the angl	e are called its _	

One way to	angl	es is in	, symbolize	d by a
small, raised	T	here are	in a circle	
is of	a complete rotati	on.		
THE ANGLES OF A	TRI ANGLE			
The o	f the	of the	three angles of	
triangle is				
COMPLEMENTARY A	AND SUPPLEMEN	TARY ANGLES	;	
Two angles with meas	ures having a	of	are called	
	angles. Two a	ngles with mea	sures having a	of
are ca	illed			

Example 4: Solve.

 One angle of a triangle is three times as large as another. The measure of the third angle is 40° more than that of the smallest angle. Find the measure of each angle.

- 2. Find the measure of the complement of each angle.
 - a. 56°

b. 89.5°

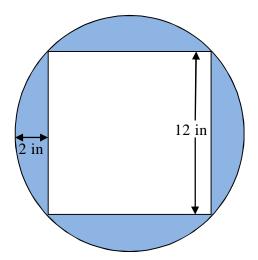
- 3. Find the measure of the supplement of each angle.
 - a. 177°

b. 0.2°

4. Find the measure of the angle described.

The measure of the angle's supplement is 52° more than twice that of its complement.

Example 5: Find the area of the shaded region.



Section 2.7: SOLVING LINEAR INEQUALITIES

When you are done with your homework you should be able to...

- π Graph the solutions of an inequality on a number line
- π Use interval notation
- π Understand properties used to solve linear inequalities
- π Solve linear inequalities
- π I dentify inequalities with no solution of infinitely many solutions
- π Solve problems using linear inequalities

١	٨	ΊΑ	R	١/	 _	П	P٠
١	ıν	$\overline{}$		·	_		

Solve:

Find the volume of a sphere with diameter 11 meters.

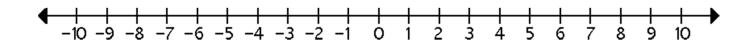
VOCABULARY

<u>Linear inequality in one variable</u> : An inequality in the form,				
		_, or		
is a linear inequality in one	variable mean	IS		
means	or		means	
, and	means	or		
·				

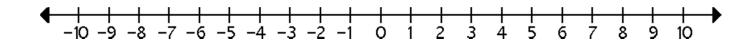
Solving an inequality:	The	of finding	g the	_ of
that	will make the ine	quality a	state	ement. These
numbers are called the	solutions of the		, and we	say they <u>satisf</u> y
the	The	of	solution	s is called the
solution set of the ine				
GRAPHS OF INEQUA				
There are		solu	itions to the	inequality
x > 5. In other words,	the solution set f	or this inequal	ity is all	
numbers which are				Can we list al
these numbers? What	does the graph of	the solution s	set look like?	Hmmmm
Graphs of	to			are
shown on a		by shading		
representing numbers	that are	···-		
	, indicate		_ that are _	
and	,, indica	ate	that	are
·				
Example 1: Graph the s	olutions of each i	nequality.		

a. $x \le 6$

b.
$$x > -\frac{3}{2}$$



c.
$$-\frac{3}{2} < x \le 6$$



SOLUTION SETS OF INEQUALITIES

INEQUALITY	I NTERVAL NOTATION	SET-BUILDER NOTATION	GRAPH
x > a			
$x \ge a$			
x < b			
$x \le b$			
a < x < b			
$a \le x \le b$			
$a < x \le b$			
$a \le x < b$			

PARENTHESIS ARE ALWAYS USED WITH _____ OR _____!!!

PROPERTIES OF INEQUALITIES

PROPERTY	THE PROPERTY IN WORDS	EXAMPLE
THE ADDITION PROPERTY OF INEQUALITY		
If, then		
If, then		
<u> </u>		
THE POSITIVE MULTIPLICATION PROPERTY OF INEQUALITY		
If and is		
positive, then		
If and is		
positive, then		
THE NEGATIVE PROPERTY OF INEQUALITY		
If and is		
negative, then		
If and is		
negative, then		

STEPS FOR SOLVING A LINEAR INEQUALITY

1. Simplify the _____ on each side.

2. Use the _____ property of _____ to collect all

the _____ terms on one side and all the _____

terms on the other side.

3. Use the _____ property of _____ to

_____ the _____ and _____.

_____ the _____ of the _____ when

_____ or _____ both sides by a

_____ number.

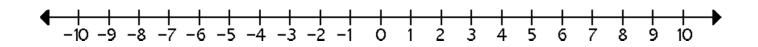
4. Express the _____ set in ____ or ____-

_____ notation, and _____ the solution set on a

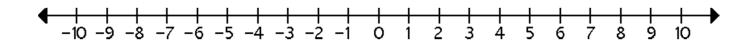
_____ line.

Example 2: Solve each inequality and graph the solution.

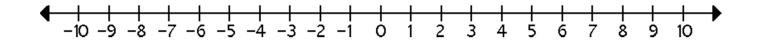
a.
$$x-3 \le 2$$



b.
$$5x+8 > 2x-7$$



c.
$$4(x+1) \ge 3x+6$$



RECOGNIZING INEQUALITIES WITH NO SOLUTION OR INFINITELY MANY SOLUTIONS

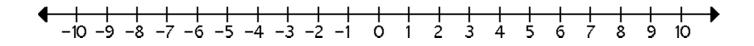
If you attempt to solve an inequality with ______ or one that is _____ for ____ number, you will _____ the ____.

The _____ results in a _____ results in a _____ statement, such as _____ . The solution set is _____ or ____, the ____ set, and the _____ is an _____ number line.

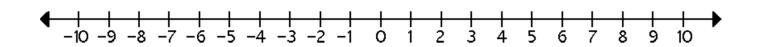
π An inequality that is ______ for _____ ____ number results in a ______ statement, such as ______. The solution set is _____ or ______, and the graph is a ______ line.

Example 3: Solve each inequality and graph the solution.

a.
$$2(x+1)-1 < 2x+1$$



b.
$$5x > 2(x-7) + 3x$$



APPLICATION

On three examinations, you have grades of 88, 78, and 86. There is still a final examination, which counts as one grade.

1. In order to get an A, your average must be at least 90. If you get 100 on the final, compute your average and determine if an A in the course is possible.

2. To earn a B in the course, you must have a final average of at least 80. What must you get on the final to earn a B in the course?

Section 3.1: GRAPHING LINEAR EQUATIONS IN TWO VARIABLES

When you are done with your homework you should be able to...

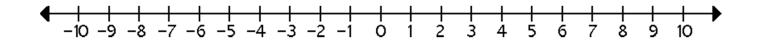
- $\boldsymbol{\pi}$ $\,$ Plot ordered pairs in the rectangular coordinate system
- π Find coordinates of points in the rectangular coordinate system
- π Determine whether an ordered pair is a solution of an equation
- π Find solutions of an equation in two variables
- π Use point plotting to graph linear equations
- π Use graphs of linear equations to solve problems

WARM-UP:

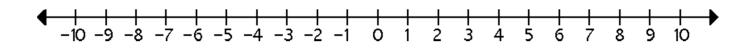
1. Find the volume of a box with dimensions ½ ft by 3 ft by 8 ft.

2. Solve the following inequalities and graph the solution sets.

a.
$$x \le 6(3x-5)$$



b.
$$2x - 1 \le 2x$$



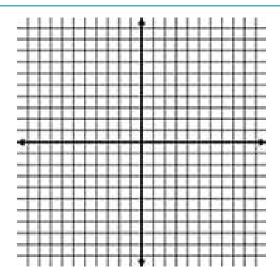
POINTS AND ORDERED PAIRS

The idea of visualizing equations as (geometric figures was o	developed by the
French philosopher and mathematici	an	This
idea is the	sy	stem or the
coordina	te system. The rectang	jular coordinate system
consists of	lines that	at right
at their	points. The horizon	tal number line is the
and the vertical n	umber line is the	The point
of intersection is a	called the	Positive
numbers are to the	_ and	the origin. Negative
numbers are to the	and tl	ne origin. The
divide the into	regions, called _	The
points located on the in the rectangular		•
to an	_ of real numbers,	The
number in each pair, called the	, denote	es the
and from the	along the	The
second number, called the	, denote	d the
distance along a	to the	or
along the itself		

Example 1: Plot the following ordered pairs.

$$(2,5), (-3,7), (-2,-4)$$

(2,5)
(-3,7)
(2 4)



SOLUTIONS OF EQUATIONS IN TWO VARIABLES

Α	of an	in	variables,
and, is an		of real num	bers with the
following property: W	hen the	is substitute	d for and
the	is substituted for	in the equation	on, we obtain a
statemen	t.		

Example 2: Determine whether each of the given points is a solution of the equation 8x + y = 1.

a. (0,1)

b. (-1,3)

c. (2,-15)

GRAPHING LINEAR EQUATIONS IN THE FORM y = mx + b

The _____ of the ____ is the ____ of all ____

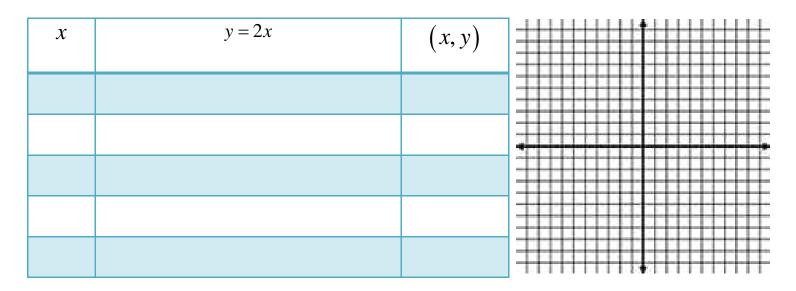
whose _____ satisfy the equation.

STEPS FOR USING THE POINT-PLOTTING METHOD FOR GRAPHING AN EQUATION IN TWO VARIABLES

- 1. Find several _____ of the equation.
- 2. Plot these ordered pairs as ______ in the _____ coordinate system.
- 3. _____ the points with a _____ curve or ____, depending on the type of equation.

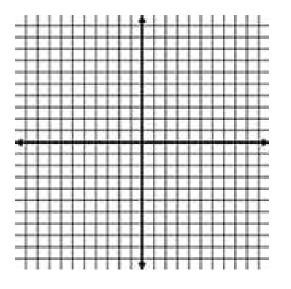
Example 3: Graph the following equations by plotting points.

a.
$$y = 2x$$



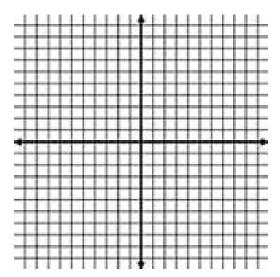
b.
$$y = -3x + 9$$

х	y = -3x + 9	(x, y)



c.
$$y = \frac{2}{5}x + 3$$

Х	$y = \frac{2}{5}x + 3$	(x, y)



COMPARING GRAPHS OF LINEAR EQUATIONS

If the value of does not change,			
π The graph of	is the graph of s	hifted	
units wh	en is a positive number.		
π The graph of	is the graph of s	hifted	
units wh	en is a positive number.		

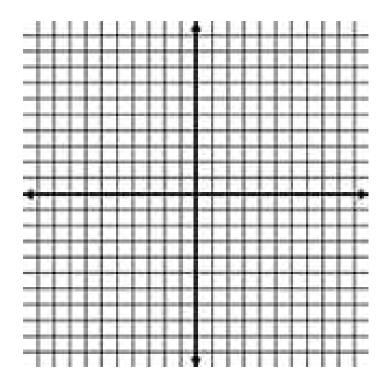
APPLICATION

In 1960, per capita fish consumption was 10 pounds. This increased by approximately 0.15 pound per year from 1960 through 2005. These conditions can be described by the mathematical model F = 0.15n + 10, where F is per capita fish consumption n years after 1960.

a. Let n = 0, 10, 20, 30, and 40. Make a table of values showing five solutions of the equation.

n	F = 0.15n + 10	(n,F)

b. Graph the formula in a rectangular coordinate system.



c. Use the graph to estimate per capita fish consumption in 2020.

d. Use the formula to project per capita fish consumption in 2020.

Section 3.2: GRAPHING LINEAR EQUATIONS USING INTERCEPTS

When you are done with your homework you should be able to...

- π Use a graph to identify intercepts
- π Graph a linear equation in two variables using intercepts
- π Graph horizontal or vertical lines

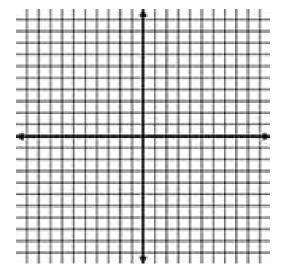
WARM-UP:

Graph the following equations by plotting points.

	a. $y = -x$		_
Х	y = -x	(x, y)	

b. $y = \frac{2}{3}x - 7$

Х	$y = \frac{2}{3}x - 7$	(x, y)



INTERCEPTS

An _____ of a graph is the _____ of a point where the graph _____. The _____. corresponding to an ______ is always _____!!! A _____ of a graph is the _____ of a point where the graph ______ the _____. **The** ______ corresponding to a ______ is always _____!!!

Example 1: Use the graph to identify the

a. x-intercept

b. y-intercept



GRAPHING USING INTERCEPTS

An equation of the form _____, where ____, and ____ are integers, is called the _____ form of a line.

STEPS FOR USING INTERCEPTS TO GRAPH Ax + By = C

1. Find the ______ and solve for _____

2. Find the _____ and solve for ____.

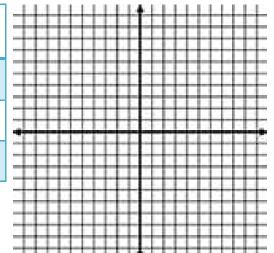
3. Find a checkpoint, a _____ ordered-pair _____.

4. Graph the equation by drawing a _____ through the ____ points.

Example 2: Graph using intercepts and a checkpoint.

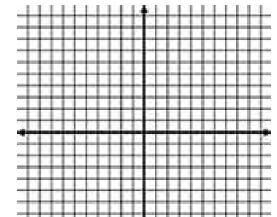
a.
$$x + y = 6$$

х	x + y = 6	(x, y)



b.
$$3x - 2y = -7$$

X	3x - 2y = -7	(x, y)

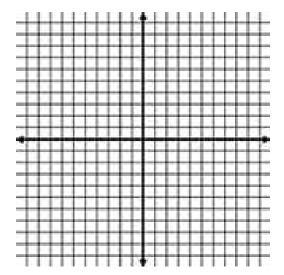


EQUATIONS OF HORIZONTAL AND VERTICAL LINES

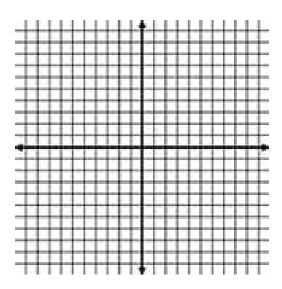
We know that the graph of any equation of the form			is a	
	as long as	and	are not both	What happens
if or	, but not both	, is zero?		
	L AND VEDTICA	N N		
HORIZONIA	L AND VERTICA	AL LINES		
The graph of ₋		is a	line. The _	
is	·			
The graph of _		is a	line. The _	
ic				

Example 3: Graph.

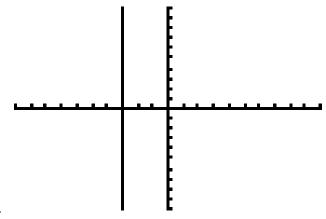
a.
$$y = 8$$



b.
$$12x = -60$$



Example 4: Write an equation for each graph.



b.

a.

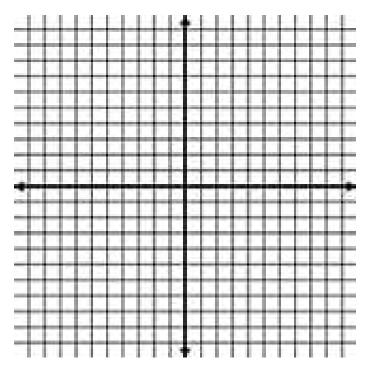
APPLICATION

A new car worth \$24,000 is depreciating in value by \$3000 per year. The mathematical model y = -3000x + 24000 describes the car's value, y, in dollars, after x years.

a. Find the *x*-intercept. Describe what this means in terms of the car's value.

b. Find the y-intercept. Describe what this means in terms of the car's value.

c. Use the intercepts to graph the linear equation.



d. Use your graph to estimate the car's value after five years.

Section 3.3: SLOPE

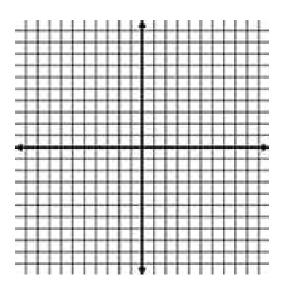
When you are done with your homework you should be able to...

- π Compute a line's slope
- $\boldsymbol{\pi}$. Use slope to show that lines are parallel
- π Use slope to show that lines are perpendicular
- $\boldsymbol{\pi}$ Calculate rate of change in applied situations

WARM-UP:

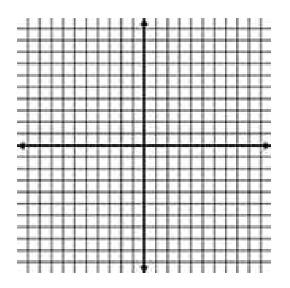
Graph each equation.

a.
$$y-2=0$$



b.
$$-2x-3y=9$$

х	-2x-3y=9	(x, y)



THE SLOPE OF A LINE

Mathematicians have developed a useful			_ of the
	_ of a line, called	the	of the line. Slope
compares the change (the) to the	
	change (the _) when moving	from one
point to another alon	g the line.		

DEFINITION OF SLOPE

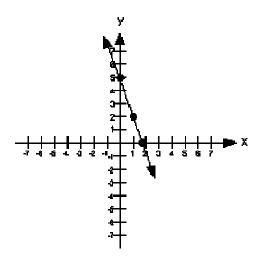
The	of the line through the distinct points and			
is				
where	It is common to use the letter to represent			
the slope of a line. This letter is used because it is the first letter of the French				
verb monter, meaning	to rise, or to ascend.			

Example 1: Find the slope of the line passing through each pair of points:

a.
$$(-1,4)$$
 and $(3,-6)$

b.
$$\left(8,\frac{3}{2}\right)$$
 and $\left(-\frac{5}{2},7\right)$

Example 2: Use the graph to find the slope of the line



POSSIBILITIES FOR A LINE'S SLOPE

POSITIVE SLOPE	NEGATI VE SLOPE	ZERO SLOPE	UNDEFI NED SLOPE

SLOPE AND PARALLEL LINES

Two _	lines that lie in the same plane are				
	If two lines do not	, the c	of		
the_	change to the	change is the			
	for each Because two parallel	lines have the same			
	, they must have the same	·			
1.	If two nonvertical lines are, then	they have the same			
2.	If two distinct nonvertical lines have the same	, then they			
	are				
3.	Two distinct vertical lines, each with	slope, are			
	·				
SLOF	PE AND PERPENDICULAR LINES				
Two	ines that at a				
() are said to be				
1.	If two nonvertical lines are, then	the			
	of their is				
2.	If the of the	of two lines is	_,		
	then the lines are				

3. A	line having slope is	
	to a vertical line having	slope.

Example 3: Determine whether the lines through each pair of points are parallel, perpendicular, or neither.

a.
$$(-2,-15)$$
 and $(0,-3)$; $(-12,6)$ and $(6,3)$

b.
$$(-2,-7)$$
 and $(3,13)$; $(-1,-9)$ and $(5,15)$

c.
$$(-1,-11)$$
 and $(0,-5)$; $(0,-8)$ and $(12,-6)$

APPLICATION

Construction laws are very specific when it comes to access ramps for the disabled. Every vertical rise of 1 foot requires a horizontal run of 12 feet. What is the grade of such a ramp? Round to the nearest tenth of a percent.

Section 3.4: THE SLOPE-INTERCEPT FORM OF THE EQUATION OF A LINE

When you are done with your homework you should be able to...

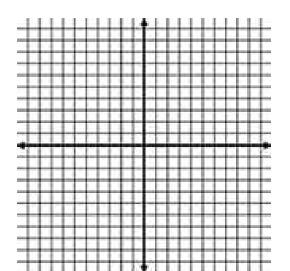
- π Find a line's slope and *y*-intercept from its equation
- $\boldsymbol{\pi}$ Graph lines in slope-intercept form
- π Use slope and y-intercept to graph Ax + By = C
- π Use slope and y-intercept to model data

WARM-UP:

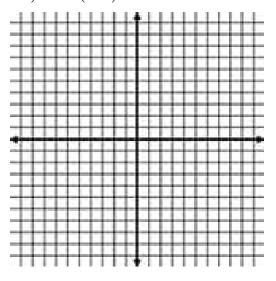
Graph each equation.

a.
$$4x-8y-2=0$$

	$\mathbf{d.} 4x - 6y - 2 = 0$	
Х	4x - 8y - 2 = 0	(x, y)



b. The line which passes through the points (-1,2) and (3,0).



SLOPE-INTERCEPT FORM OF THE EQUATION OF A LINE

The _____ - ____ form of the _____ is

Example 1: Find the slope and the y-intercept of the line with the given equation:

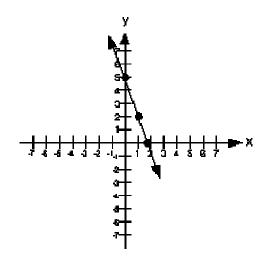
a.
$$y = -4x - 1$$

b.
$$6x - y = -1$$

c.
$$y = \frac{5}{7}x + 2$$

d.
$$y = -\frac{x}{3} + \frac{2}{3}$$

Example 2: Use the graph to find the equation of the line in slope-intercept form.



GRAPHING BY USING y = mx + b SLOPE AND Y-INTERCEPT

1. Plot the point containing the _____ on the ____ axis.

This is the point ______.

2. Obtain a second _____ using the _____, ___. Write

_____ as a _____, and use _____ over _____,

starting at the ______.

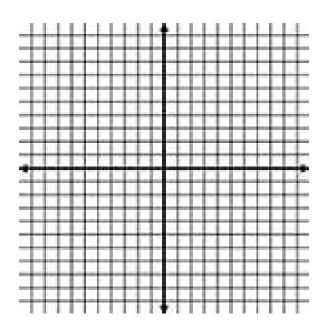
3. Use a ______ to draw a _____ through the two

______ at the _____

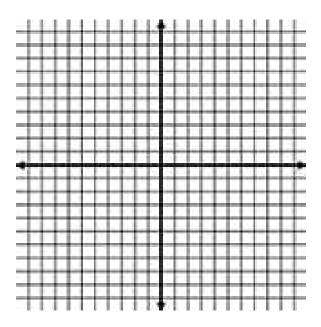
of the line to show that the line continues _____ in both directions.

Example 3: Graph using the slope and y-intercept.

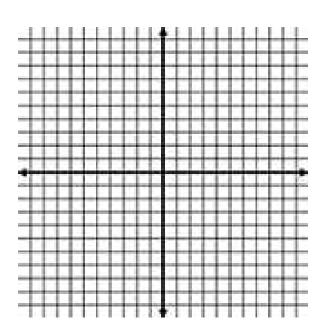
a.
$$y = -5x + 3$$



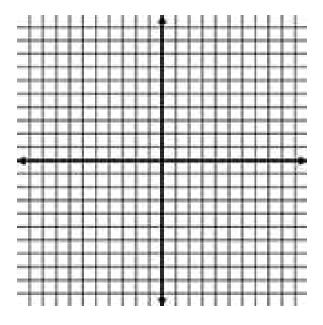
b. 10x - 5y = 25



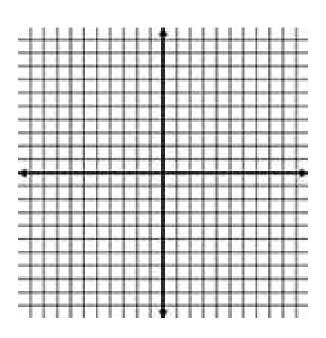
c. x = 2y - 3



$$d. -y = x - 1$$



e.
$$y = -\frac{6}{7}x + 4$$



APPLICATION

Write an equation in the form of y = mx + b of the line that is described.

1. The *y*-intercept is -4 and the line is parallel to the line whose equation is 2x + y = 8.

2. The line falls from left to right. It passes through the origin and a second point with opposite x- and y-coordinates.

Section 3.5: THE POINT-SLOPE FORM OF THE EQUATION OF A LINE

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$. Use the point-slope form to write equations of a line
- π Find slopes and equations of parallel and perpendicular lines
- π Write linear equations that model data and make predictions

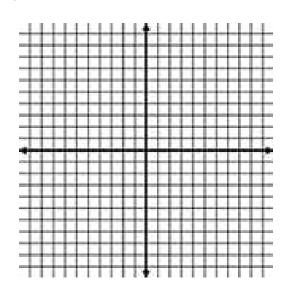
WARM-UP:

1. Simplify.

$$2-5[2-(7x+2)]$$

2. Graph the equation using the slope and *y*-intercept.

$$-\frac{x}{3} - \frac{y}{4} = 1$$



POINT-SLOPE FORM

We can use the		of a line to obtain and	other useful form of	the
line's equation. Consi	der a nonvertica	al line that has slope _	and contains th	е
point	Now let	represent any	other	or
the	Keep in mind	that the point	is	
	_ and is	in		
position. The point _		is		

POINT-SLOPE FORM OF THE EQUATION OF A LINE

Γhe form of the
of a nonvertical line with slope that passes through the point
S

Example 1: Write the point-slope form of the equation of the line with the given slope that passes through the given point.

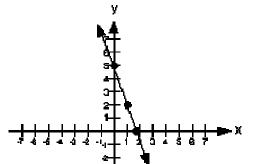
a.
$$m = -2$$
; $(5, -11)$
b. $m = \frac{5}{8}$; $(\frac{1}{4}, 7)$

c.
$$m = 0$$
; $(-21,5)$

d. m = undefined; (0,0)

Example 2: Use the graph to find two equations of the line in point-slope form.

1.



2.

Now write the slope-intercept form:

1.

2.

EQUATIONS OF LINES

FORM	WHAT YOU SHOULD KNOW		
Standard Form	Graph equations in this form using and a		
y = b	Graph equations in this form as lines with as the		
x = a	Graph equations in this form as lines with as the		
Slope-Intercept Form	Graph equations in this form using the, and the slope, *Start with this form when writing a and equation if you know a line's and		
Point-Slope Form	Start with this form when writing a linear equation if you know the of the line and a on the NOT containing the OR points on the line, of which contains the using		

PARALLEL AND PERPENDICULAR LINES

Recall that parallel lines have the _____ and

perpendicular lines have ______ which are _____

Example 3: Use the given conditions to write an equation for each line in point-slope form and slope-intercept form.

a. Passing through (-2,-7) and parallel to the line whose equation is y = -5x + 4.

b. Passing through (-4,2) and perpendicular to the line whose equation is $y = -\frac{1}{3}x + 7$.

c. Passing through (5,-9) and parallel to the line whose equation is x+7y=12.

Section 4.1: SOLVING SYSTEMS OF LINEAR EQUATIONS BY GRAPHING

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ Decide whether an ordered pair is a solution of a linear system
- $\boldsymbol{\pi}$ Solve systems of linear equations by graphing
- π Use graphing to identify systems with no solution or infinitely many solutions
- π Use graphs of linear systems to solve problems

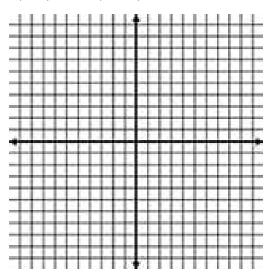
WARM-UP:

1. Determine if the given number or ordered pair is a solution to the given equation.

a.
$$5x+3=21$$
; $\frac{18}{5}$

b.
$$-x+2y=0$$
; (4,1)

2. Graph the line which passes through the points (0,1) and (-5,3).



SYSTEMS OF LINEAR EQUATIONS AND THEIR SOLUTIONS

We have seen that all _		in the fo	orm	are
straight	when graphed		_ such equat	ions are called a
0	f			or a
		A		to a system
of two	equations in two		is	s an
	that _			
equations in the	·			
Example 1: Determine w	hether the given ord	lered pai	r is a solutio	n of the system.
a.				
(-2, -5) $6x - 2y = -2$		b.		
6x - 2y = -2		(10	,7)	
3x + y = -11		6 <i>x</i> ·	-5y = 25	

4x + 15 y = 13

SOLVING LINEAR SYSTEMS BY GRAPHING

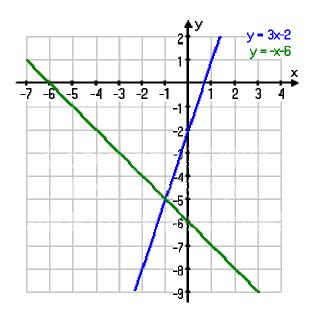
The _____ of a ____ of two linear equations in _____ variables can be found by _____ of the _____ in the _____ rectangular _____ system. For a system with ______ solution, the _____ of the point of ______ give the _____ solution.

3x + y = -11

STEPS FOR SOLVING SYSTEMS OF TWO LINEAR EQUATIONS IN TWO VARIABLES, x AND y, BY GRAPHING

	•	<i>y</i> ·		
1.	Graph the first	·		
2.		the second equation on the _		set of
	·			
3.	If the	representing the	grap	hs
	at a	, determine the		of this point of
	intersection. The _		_ is the	
	of the	·		
4.		the	_ in	equations.

Example 2: Use the graph below to find the solution of the system of linear equations.



Example 3: Solve each system by graphing. Use set notation to express solution sets.

a.

$$x + y = 2$$

$$x - y = 4$$

b.

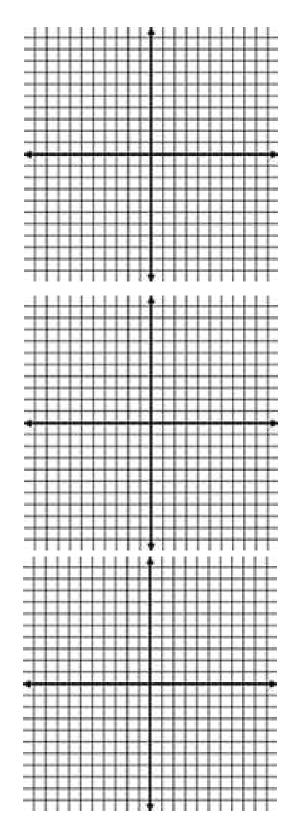
$$y = 3x - 4$$

$$y = -2x + 1$$

C.

$$x + y = 6$$

$$y = -3$$



LINEAR SYSTEMS HAVING NO SOLUTION OR INFINITELY MANY SOLUTIONS

We have seen that a _____ of linear equations in _____

variables represents a _		of	. The lines either
at	t po	int, are	, or are
	Thus, there a	re	possibilities for
the of	f solutions to a sy	ystem of two linear equations.	
THE NUMBER OF SOL	UTIONS TO A S	SYSTEM OF TWO I	LINEAR
NUMBER OF SOLUTION	ONS	WHAT THIS MEANS GRAPHICALLY	
Exactlysolution.	_ ordered pair	The two lines point. TI	his is a
Solution			 system.
	many solutions		 th

Example 4: Solve each system by graphing. If there is no solution or infinitely many solutions, so state. Use set notation to express solution sets.

a.

$$x + y = 4$$

$$2x + 2y = 8$$

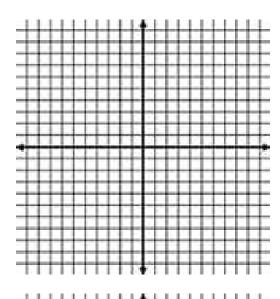
b.

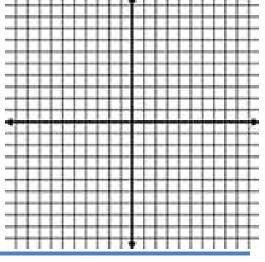
$$y = 3x - 1$$

$$y = 3x + 2$$

C.

$$2x - y = 0$$
$$y = 2x$$





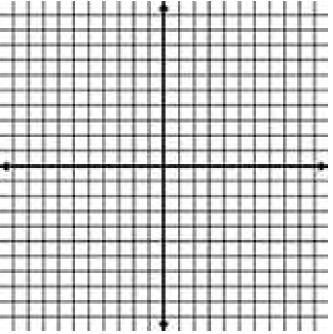
APPLICATION

A band plans to record a demo. Studio A rents for \$100 plus \$50 per hour. Studio B rents for \$50 plus \$75 per hour. The total cost, y, in dollars, of renting the studios for x hours can be modeled by the linear system

$$y = 50x + 100$$

$$y = 75x + 50$$

a. Use graphing to solve the system. Extend the *x*-axis from 0 to 4 and let each tick mark represent 1 unit (one hour in a recording studio). Extend the *y*-axis from 0 to 400 and let each tick mark represent 100 units (a rental cost of \$100).



b. Interpret the coordinates of the solution in practical terms.

When you are done with your 4.2 homework you should be able to...

- π Solve linear systems by the substitution method
- $\boldsymbol{\pi}$. Use the substitution method to identify systems with no solution or infinitely many solutions
- π Solve problems using the substitution method

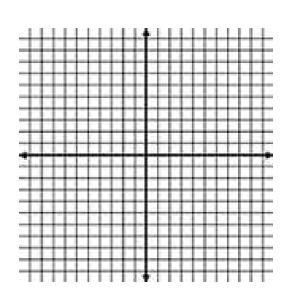
WARM-UP:

1. Solve.

$$-5x + 3(2x - 7) = x - 21$$

2. Solve the following system of linear equations by graphing. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

$$y = -4x + 6$$
$$y = -2x$$



Steps for Solving a System of Two Linear Equations Containing Two Variables by Substitution

1. Solve one of the equation	1. Solve one of the equations for one of the unknowns.			
2. Substitute the expressi	2. Substitute the expression solved for in Step 1 into the <u>other</u> equation. The			
result will be a	equation in	variable.		
3 the line	ear equation in one variable	found in Step 2.		
4	the value of the vericle of	aund in Ctan 2 into one of		
4	the value of the variable f	ound in Step 3 into one of		
the cultinal amortions to	. <i>6</i> !	-£ +b+b		
the <u>original</u> equations to	find the	or the other		
5 Check your answer by		tho		
J. Check your answer by _		tile		
into	of the orio	inal equations.		

Example 1: Solve the following systems of linear equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

a.
$$5x + 2y = -5$$

 $3x - y = -14$

b.
$$y = 5x - 3$$
$$y = 2x - \frac{21}{5}$$

is a ______ and yields a result of _____ or ____.

This system consists of two ______ lines which never

______.

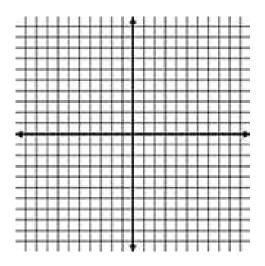
Suppose you are solving a system of equations and you end up with 5 = 5 or x = x. This is an _____ and yields a result of all ______ which are on the ______. In other words, the system would have ______ solutions.

This system consists of two lines which are ______.

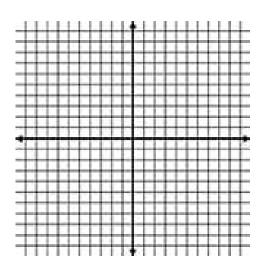
 π Suppose you are solving a system of equations and you end up with 5 = 0. This

Example 2: Solve the following systems of linear equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Graph the system.

a.
$$-x+3y=4$$
$$2x-6y=-8$$



b.
$$x - 5y = 3$$
 $-2x + 10y = 8$



Example 3: Write a system of equations that has infinitely many solutions.
APPLICATIONS 1. Christa is a waitress and collects her tips at the table. At the end of the
shift she has 68 bills in her tip wallet, all ones and fives. If the total value of her tips is \$172, how many of each bill does she have?
2. Melody wishes to enclose a rectangular garden with fencing, using the side of her garage as one side of the rectangle. A neighbor gave her 30 feet of fencing, and Melody wants the length of the garden along the garage to be 3 feet more than the width. What are the dimensions of the garden?

When you are done with your 4.3 homework you should be able to...

- π Solve linear systems by the addition method
- $\boldsymbol{\pi}$. Use the addition method to identify systems with no solution or infinitely many solutions
- π Determine the most efficient method for solving a linear system

WARM-UP:

1. Solve the following system of linear equations by substitution. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent.

$$y = \frac{7}{2}x - 3$$

$$y = -4x + 2$$

ELIMINATING A VARIABLE USING THE ADDITION METHOD

The	method is most useful if one of the	equations has an
	variable. A third method for solving a linear s	ystem is the
	method. The addition method	a
variable by	the equations. When we use the ac	ddition method,

we wa	ant to obtain two equations whose is an equation containing			
only _	only variable. The key step is to obtain, for one of the variables,			
	that differ only in			
_	s for Solving a System of Two Linear Equations Containing Two Variables ddition			
1.	If necessary, both equations in the form			
2.	If necessary, either equation or both equations by			
	appropriate nonzero numbers so that the of the <i>x</i> -coefficients			
	or y-coefficients is			
3.	the equations in step 2. The is an			
	in variable.			
4.	the equation in one variable.			
5.	the value obtained in step 4 into either of			
	the equations and for the other variable.			
6.	the solution in of the original equations.			

Example 1: Solve the following systems of linear equations by the addition method.

State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use set notation to express solution sets.

$$x + y = 6$$

$$x - y = -2$$

$$3x - y = 11$$

$$2x + 5y = 13$$

COMPARING SOLUTION METHODS

METHOD	ADVANTAGES	DISADVANTAGES
GRAPHI NG	You can the	If the solutions do not involve or are too or to be on the graph, it's impossible to tell exactly what the are.
SUBSTITUTION	Gives solutions. Easy to use if a is on side by itself.	Solutions cannot be Can introduce extensive work with when no variable has a coefficient of or
ADDITION	Gives solutions. Easy to use!	Solutions cannot be

Example 2: Solve the following systems of linear equations by any method. State whether the system is consistent or inconsistent. For those systems that are consistent, state whether the equations are dependent or independent. Use set notation to express solution sets.

a.
$$x + y = 6$$
$$x - y = -2$$

$$3x - y = 11$$

$$2x + 5y = 13$$

$$4x - 2y = 2$$

$$2x - y = 1$$

$$3x = 4y + 1$$

$$4x + 3y = 1$$

$$2x + 4y = 5$$

$$3x + 6y = 6$$

Section 4.4: PROBLEM USING SOLVING SYSTEMS OF EQUATIONS

When you are done with your homework you should be able to...

- π Solve problems using linear systems
- π Solve simple interest problems
- π Solve mixture problems
- π Solve motion problems

WARM-UP:

- 1. Solve the system of linear equations using the substitution or the addition method. Determine if the system is consistent or inconsistent, and if the equations are dependent or independent. Give your result in set notation.
- a.

$$2x-3y=4$$

$$3x + 4y = 0$$

b.

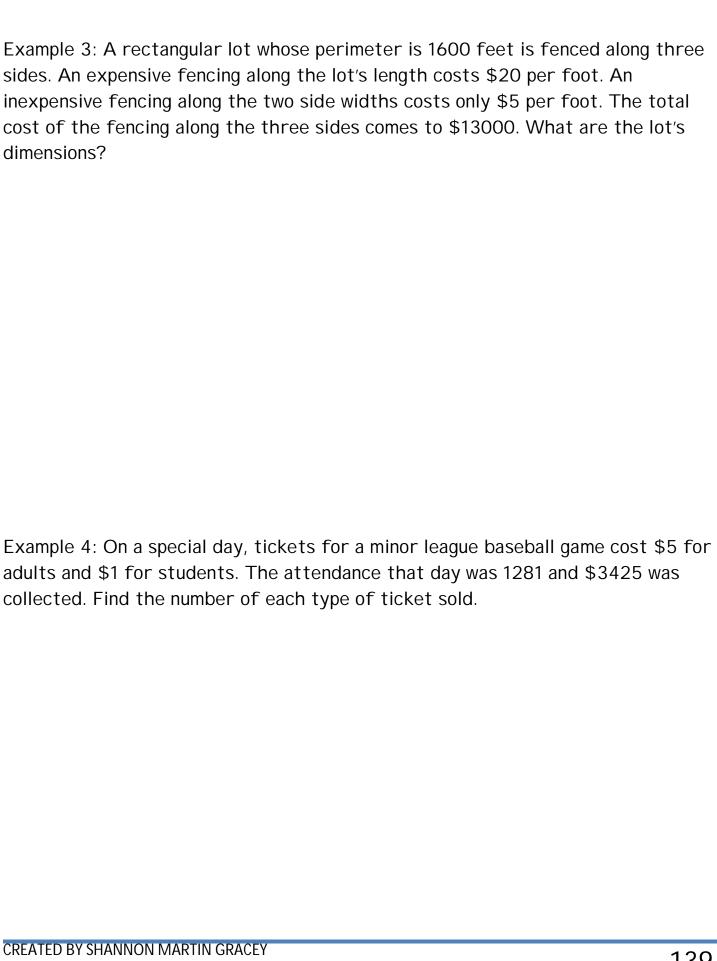
$$x - y = 3$$

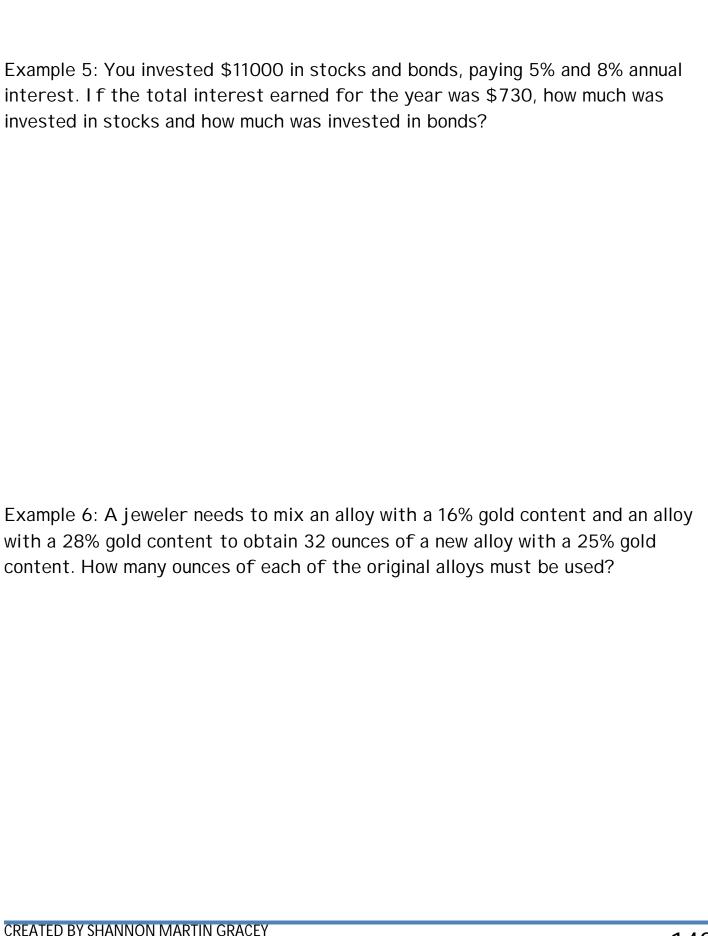
$$2x = 4 + 2y$$

A STRATEGY FOR SOLVING WORD PROBLEMS USING SYSTEMS OF EQUATIONS

When we solved p	problems in chapter 2, we let $oldsymbol{x}$ re	epresent a				
that was	Problems in th	Problems in this section involve				
unknown	We will let	and represent				
the	quantities and	the English words				
into a	of	equations.				
•	um of two numbers is five. If one erence is thirteen. Find the numb	e number is subtracted from the pers.				

Example 2: Each day, the sum of the average times spent on grooming for 15- to 19-year-old women and men is 96 minutes. The difference between grooming times for 15- to 19-year-old women and men is 22 minutes. How many minutes per day do 15- to 19-year-old women and men spend on grooming?





A FORMULA FOR MOTION

Distance equals	times

Example 7: When a plane flies with the wind, it can travel 4200 miles in 6 hours. When the plane flies in the opposite direction, against the wind, it takes 7 hours to fly the same distance. Find the rate of the plane in still air and the rate of the wind.

Example 8: With the current, you can row 24 miles in 3 hours. Against the same current, you can row only 2/3 of this distance in 4 hours. Find your rowing rate in still water and the rate of the current.

Section 5.1: ADDING AND SUBTRACTING POLYNOMIALS

When you are done with your homework you should be able to...

- π Understand the vocabulary used to describe polynomials
- π Add polynomials
- π Subtract polynomials
- π Graph equations defined by polynomials of degree 2

WARM-UP:

Simplify:

$$-6x + 5y - 2x^2 - 2y + x^2$$

DESCRIBING POLYNOMIALS

A	is a	term or the	:	of two
or more	containing _		with	
number	It is custom	nary to write the		in the
order of	powers of	the	·	This is the
	form of a		. We begin t	his chapter
by limiting discussion	to polynomials conta	aining	_ variable. E	Each term of
such a	in	_ is of the form ₋		The
of _	is			

THE DEGREE OF ax^n

If ______ and ____ is a _____ number, the _____ of ____ of a nonzero constant term is _____. The constant zero has no defined degree.

Example 1: I dentify the terms of the polynomial and the degree of each term.

a.
$$-4x^5 - 13x^3 + 5$$

b.
$$-x^2 + 3x - 7$$

A polynomial is ______ when it contains no _____ symbols and no ______ term is called a ______. A simplified polynomial that has exactly ______ term is called a ______. A simplified polynomial that has ______ terms is called a ______ and a simplified polynomial with ______ terms is called a ______. Simplified polynomials with ______ or more ______ have no special names. The ______ of a ______ is the ______ of a ______ is the ______ of a _____.

Example 2: Find the degree of the polynomial.

a.
$$5x^2 - x^8 + 16x^4$$

b.
$$-2$$

ADDING POLYNOMIALS

Recall that ______ are terms containing _____ the same _____ to the _____ powers. _____ are added by ______.

Example 3: Add the polynomials.

a.
$$(8x-5)+(-13x+9)$$

b.
$$(7y^3 + 5y - 1) + (2y^2 - 6y + 3)$$

c.
$$\left(\frac{2}{5}x^4 + \frac{2}{3}x^3 + \frac{5}{8}x^2 + 7\right) + \left(-\frac{4}{5}x^4 + \frac{1}{3}x^3 - \frac{1}{4}x^2 - 7\right)$$

d.

$$7x^2 - 5x - 6$$
$$-9x^2 + 4x + 6$$

SUBTRACTING POLYNOMIALS

We ______ real numbers by ______ the _____ of the number being ______. Subtraction of polynomials also involves _______. If the sum of two polynomials is ______, the polynomials are ______ of each other. Example 4: Find the opposite of the polynomial.

a. x+8 b. $-12x^3-x+1$

SUBTRACTING POLYNOMIALS

То	two polynomials,	the first polynomial and the
0	f the second polynomial	

Example 5: Subtract the polynomials.

a.
$$(x-2)-(7x+9)$$

b.
$$(3x^2-2x)-(5x^2-6x)$$

c.
$$\left(\frac{3}{8}x^2 - \frac{1}{3}x - \frac{1}{4}\right) - \left(-\frac{1}{8}x^2 + \frac{1}{2}x - \frac{1}{4}\right)$$

d.
$$3x^5 - 5x^3 + 6$$
$$-(7x^5 + 4x^3 - 2)$$

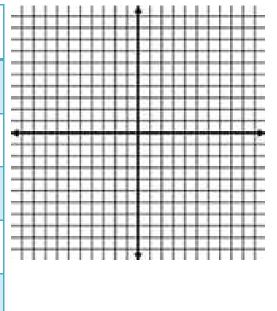
GRAPHING EQUATIONS DEFINED BY POLYNOMIALS

Graphs of equations defined by	of degree have a
quality. We can obtain the	eir graphs, shaped like
or bowls, usi	ng the
method for graphing an e	equation in two variables.

Example 6: Graph the following equations by plotting points.

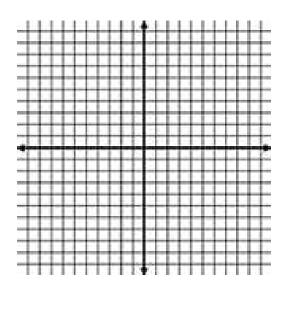
a.
$$y = x^2 - 1$$

х	$y = x^2 - 1$	(x, y)



b.
$$y = 9 - x^2$$

Х	$y = 9 - x^2$	(x, y)



Section 5.2: MULTIPLYING POLYNOMIALS

When you are done with your homework you should be able to...

- π Use the product rule for exponents
- π Use the power rule for exponents
- π Use the products-to-power rule
- π Multiply monomials
- π Multiply a monomial and a polynomial
- π Multiply polynomials when neither is a monomial

WARM-UP:

Add or subtract the following polynomials:

a.
$$\left(-22r^7+6r^3-r^2\right)-\left(2r^7+r^2-1\right)$$
 b. $\left(8x^4-x^3-x^2\right)+\left(-8x^4+x^3\right)$

b.
$$(8x^4 - x^3 - x^2) + (-8x^4 + x^3)$$

THE PRODUCT RULE FOR EXPONENTS

We have seen that _____ are used to indicate _____ multiplication. Recall that $3^4 =$ ______. Now consider $3^4 \cdot 3^2$:

THE PRODUCT RULE

When multiplying _____ expressions with the _____ base, _____ the _____ of the _____ base.

Example 1: Simplify each expression.

a.
$$2^5 \cdot 2^3$$

b.
$$x^2 \cdot x \cdot x^4$$

THE POWER RULE (POWERS TO POWERS)

When an		is	to a	
	the		Place the	
of the		_on the	and	
the				

Example 2: Simplify each expression.

a.
$$(4^2)^3$$

b.
$$(x^{12})^5$$

THE PRODUCTS-TO-POWERS RULE FOR EXPONENTS

When a ______ is _____ to a _____, _____ each _____ to the _____.

Example 3: Simplify each expression.

a.
$$(-2y)^5$$

b.
$$(10x^3)^2$$

MULTIPLYING MONOMIALS

To ______ with the _____ and ____ then multiply the _____ to multiply the _____ . Use the _____ .

Example 4: Multiply.

d.
$$(8x)(-11x^4)$$

e.
$$(7y^3)(2y^2)$$

$$f. \left(\frac{2}{5}x^4\right) \left(-\frac{5}{6}x^7\right)$$

MULTIPLYING A MONOMIAL AND A POLYNOMIAL THAT IS NOT A MONOMIAL

To ______ a _____ and a ______, use the _____ property to _____ each ____ of the _____.

Example 5: Multiply.

a.
$$3x^2(2x-5)$$

b.
$$-x(x^2+6x-5)$$

MULTIPLYING POLYNOMIALS WHEN NEITHER IS A MONOMIAL

Multiply each ______ of one _____ by each _____ of the other polynomial. Then _____ terms.

Example 6: Multiply.

a.
$$(x+2)(x+5)$$

b.
$$(2x+5)(x+3)$$

c.
$$(x^2 - 7x + 9)(x + 4)$$

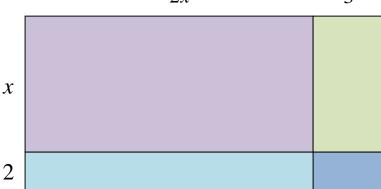
Example 7: Simplify.

a.
$$3x^2(6x^3+2x-3)-4x^3(x^2-5)$$

b.
$$(y+6)^2 - (y-2)^2$$

APPLICATION

3



a. Express the area of the large rectangle as the product of two binomials.

b. Find the sum of the areas of the four smaller rectangles.

c. Use polynomial multiplication to show that your expressions for area in parts (a) and (b) are equal.

Section 5.3: SPECIAL PRODUCTS

When you are done with your homework you should be able to...

- π Use FOIL in polynomial multiplication
- $\boldsymbol{\pi}$. Multiply the sum and difference of two terms
- $\boldsymbol{\pi}$ $\,$ Find the square of a binomial sum
- π Find the square of a binomial difference

WARM-UP:

Multiply the following polynomials:

a.
$$(x-1)^2$$

b.
$$(x-5)(x+5)$$

THE PRODUCT OF TWO BINOMIALS: FOIL

F represents the ______ of the _____ terms in each ______, O represents the _____ of the _____ terms, I represents the _____ of the _____ terms, and L represents the _____ of the _____ terms.

USING THE FOIL METHOD TO MULTIPLY BINOMIALS

$$(ax+b)(cx+d) = \underline{\hspace{1cm}}$$

Example 1: Multiply using FOIL.

a.
$$(5x+3)(3x+8)$$

b.
$$(x-10)(x+9)$$

THE PRODUCT OF THE SUM AND DIFFERENCE OF TWO TERMS

 $(A+B)(A-B) = \underline{\hspace{1cm}}$

The _____ of the ____ and the ____ of the

_____ two terms is the _____ of the _____

_____ the _____ of the second.

Example 2: Multiply.

a.
$$(x+4)(x-4)$$

b.
$$(3x-7y)(3x+7y)$$

THE SQUARE OF A BINOMIAL SUM

 $(A+B)^2 = \underline{\hspace{1cm}}$

The _____ of a ____ is the ____

term _____ of the terms

_____ the last term _____.

Example 3: Multiply.

a.
$$(x+6)^2$$

b.
$$(x^2 + 9)^2$$

THE SQUARE OF A BINOMIAL DIFFERENCE

$$(A-B)^2 = \underline{\hspace{1cm}}$$

The _____ of a _____ is the _____

term _____ of the terms

_____ the last term _____.

Example 4: Multiply.

a.
$$(5x - y)^2$$

b.
$$(x^3 - 11)^2$$

Section 5.4: POLYNOMI ALS IN SEVERAL VARIABLES

When you are done with your homework you should be able to...

- π Evaluate polynomials in several variables
- π Understand the vocabulary of polynomials in two variables
- π Add and subtract polynomials in several variables
- π Multiply polynomials in several variables

WARM-UP:

Evaluate the polynomial:

$$x^{3}y + 2xy^{2} + 5x - 2$$
; $x = -2$ and $y = 3$

EVALUATING A POLYNOMIAL IN SEVERAL VARIABLES

1	the given value for each _	
2. Perform the resulting		using the
of	•	

DESCRIBING POLYNOMIALS IN TWO VARIABLES

In general, a	in	
and, contains the	of one or more	in
the form	The constant,, is the	·
The	, and, represent	
numbers. The	of the	
is		

Example 1: Determine the coefficient of each term, the degree of each term, and the degree of the polynomial.

$$8xy^4 - 17x^5y^3 + 4x^2y - 9y^3 + 7$$

ADDING AND SUBTRACTING POLYNOMIALS IN SEVERAL VARIABLES

_____ in _____ variables are added by

_____·

Example 2: Add or subtract.

a.
$$(x^3 - y^3) - (-4x^3 - x^2y + xy^2 + 3y^3)$$

b.
$$(7x^2y + 5xy + 13) + (-3x^2y + 6xy + 4)$$

MULTIPLYING POLYNOMIALS IN SEVERAL VARIABLES

The ______ of _____ the basis of ______
___ can be done _____
by _____ and _____
_ on ____ with the _____

____·

Example 3: Multiply.

a.
$$(5xy^3)(-10x^2y^4)$$

c.
$$(x-2y^4)(x+2y^4)$$

b.
$$-x^7y^2(x^2+7xy-4)$$

d.
$$(x^2 - y)^2$$

Section 5.5: DIVIDING POLYNOMIALS

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$. Use the quotient rule for exponents
- $\boldsymbol{\pi}$. Use the zero-exponent rule for exponents
- π Use the quotients-to-power rule
- π Divide monomials
- π Check polynomial division
- π Divide a polynomial by a monomial

WARM-UP:

1. Find the missing exponent, designated by the question mark, in the final step:

$$\frac{x^8}{x^3} = \frac{\cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x} \cdot \cancel{x}}{\cancel{x} \cdot \cancel{x} \cdot \cancel{x}} = x^?$$

2. Simplify:

$$\frac{\left(2a^3\right)^5}{\left(b^4\right)^5}$$

THE QUOTIENT RULE FOR EXPONENTS

When dividing ______ expressions with the _____ nonzero
base, _____ the exponent in the _____ from the
_____ in the _____ of the _____
base.

Example 1: Simplify each expression.

a.
$$\frac{2^5}{2^3}$$

b.
$$\frac{x^{10}}{x^8}$$

THE ZERO-EXPONENT RULE

If _____ is any _____ number other than _____,

Example 2: Simplify each expression.

a.
$$(4^2)^0$$

b.
$$-7x^0$$

THE QUOTIENTS-TO-POWERS RULE FOR EXPONENTS

 If _____ and ____ are real numbers and ____ is nonzero, then

 When a _____ is ____ to a _____, ___

 the _____ to the _____ and _____ by the _____.

Example 3: Simplify each expression.

a.
$$\left(\frac{x}{3}\right)^5$$

b.
$$\left(\frac{4x^3}{5y}\right)^2$$

DIVIDING MONOMIALS

To ______, _____the _____ and then divide the _____.

Use the _____ rule for _____ to divide the _____.

Example 4: Divide.

a.
$$\frac{16x^4}{2x^4}$$

b.
$$\frac{6x^2y^5}{21xy^3}$$

c.
$$\frac{35r^8}{14r^7}$$

DIVIDING A POLYNOMIAL THAT IS NOT A MONOMIAL BY A MONOMIAL

To by a _	 each
of the _	 by the

Example 5: Find the quotient.

a.
$$(24x^6 - 12x^4 + 8x^3) \div (4x^3)$$

b.
$$\frac{459x^{10}y^9 + 18x^5y^3 - 9x^4y}{-9x^3y}$$

Section 5.6: LONG DIVISION OF POLYNOMIALS AND SYNTHETIC DIVISION

When you are done with your homework you should be able to...

- π Use long division to divide by a polynomial containing more than one term
- π Divide polynomials using synthetic division

WARM-UP:

a. Divide using long division:

b. Simplify:

$$\frac{5x^5 - 8x^3 + x^2}{2x^2}$$

STEPS FOR DIVIDING A POLYNOMIAL BY A BINOMIAL

1	the terms of	the	and
the	e in	powers of	f the variable.
2	the	term in the	by
the	e term in the	The	result is the
	term of the	.	
3	every term in the _		by the
	term in the		eresulting
	beneath the	with	
	ms lined up. the	_ from the	
5	down the next te	rm in the	
div	idend and write it next to the	to fo	orm a new
6. Use	e this new expression as the	and r	repeat the
pro	ocess until the	can no longer be	
	This will occur	when the	of the
	is	than the	of
the	e		

Example 1: Divide.

a.
$$\frac{x^2 + 7x + 10}{x + 5}$$

b.
$$\frac{2y^2 - 13y + 21}{y - 3}$$

c.
$$\frac{x^3 + 2x^2 - 3}{x - 2}$$

d.
$$(8y^3 + y^4 + 16 + 32y + 24y^2) \div (y+2)$$

DIVIDING POLYNOMIALS USING SYNTHETIC DIVISION

We can use	divisio	on to divide	if the
	is of the form	Tł	nis method provides a
	more quickly than	di	vision.
STEPS FOR SY	NTHETIC DIVISION		
1. Arrange t	ne	in	powers, with
a	_ coefficient for any	te	rm.
2. Write	for the		To the,
write the	of th	e	
3. Write the			_ of the
	on the	row.	
4	times	the	just written on the
	row. Write the		in the next
	in the	row.	
5	the values in this new co	lumn, writing the	e in the
	row.		
6. Repeat th	s series of	and	d
until all	are fill	ed in.	

7. Use the numbers in the last row to write	e the plus the
	the The
of the	term of the quotient will be
less than the	of the first term of the
The final value	in this row is the

Example 2: Divide using synthetic division.

a.
$$(x^2 + x - 2) \div (x - 1)$$

b.
$$(x^2 - 6x - 6x^3 + x^4) \div (6 + x)$$

c.
$$\frac{x^7 - 128}{x - 2}$$

d.
$$(y^5 - 2y^4 - y^3 + 3y^2 - y + 1) \div (y - 2)$$

APPLICATION

You just signed a contract for a new job. The salary for the first year is \$30,000 and there is to be a percent increase in your salary each year. The algebraic expression

$$\frac{30000x^n - 30000}{x - 1}$$

describes your total salary over n years, where x is the sum of 1 and the yearly percent increase, expressed as a decimal.

- a. Use the given expression and write a quotient of polynomials that describes your total salary over four years.
- b. Simplify the expression in part (a) by performing the division.

c. Suppose you are to receive an increase of 8% per year. Thus, x is the sum of 1 and 0.08, or 1.08. Substitute 1.08 for x in the expression in part (a) as well as the simplified expression in part (b). Evaluate each expression. What is your total salary over the four-year period?

Section 5.7: NEGATIVE EXPONENTS AND SCIENTIFIC NOTATION

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$. Use the negative exponent rule
- π Simplify exponential expressions
- π Convert from scientific notation to decimal notation
- π Convert from decimal notation to scientific notation
- π Compute with scientific notation
- π Solve applied problems using scientific notation

WARM-UP:

1. Divide:

$$\left(7x^4 - 8x\right) \div \left(x + 3\right)$$

2. Simplify:

$$\frac{1}{\left(6x^3\right)^2}$$

NEGATIVE INTEGERS AS EXPONENTS A nonzero base can be raised to a _____ power. The _____ rule can be used to help determine what a _____ as an should mean. THE NEGATIVE EXPONENT RULE If _____ is any real number other than ____ and ____ is a natural number, then NEGATIVE EXPONENTS IN NUMERATORS AND DENOMINATORS If _____ is any real number other than ____ and ____ is a natural number, then When a _____ number appears as an _____, the position of the _____ (from _____ to

_____ or from _____ to _____)

and make the _____. The sign of the

_____ does ____ change.

Example 1: Write each expression with positive exponents only. Then simplify, if possible.

a.
$$-7^{-2}$$

c.
$$3^{-1} - 6^{-1}$$

b.
$$(-7)^{-2}$$

d.
$$\frac{x^{-12}}{v^{-1}}$$

SIMPLIFYING EXPONENTIAL EXPRESSIONS

Properties of ______ are used to _____ is ____ is ____ when

- π Each _____ occurs only _____
- π No _____ appear
- π No _____ are raised to _____
- π No _____ or ____ exponents appear

STEPS FOR SIMPLIFYING EXPONENTIAL EXPRESSIONS

1. If necessary, be sure that each ______ appears only _____, using ______.

2. If necessary, _____ parentheses using _____

or _____.

3. If necessary, simplify _____ to ____ using

4. If necessary, ______ exponential expressions with _____

powers as _____(____). Furthermore, write the answer with

_____ exponents using _____.

Example 2: Simplify. Assume that variables represent nonzero real numbers.

a.
$$\frac{45z^4}{15z^{12}}$$

c.
$$\frac{\left(5x^3\right)^2}{x^7}$$

b.
$$\frac{(3y^4)^3y^{-7}}{y^7}$$

d.
$$\left(\frac{x^3}{y^2}\right)^{-4}$$

SCIENTIFIC NOTATION

A number is written in	notation when	
it is expressed in the form		
where is a number than or equal to	and	
than () and is an	,	

It is customary to use the _______ symbol, _____, rather than a dot, when writing a number in ______. We can use _____, the exponent on the _____ in _____, to change a number in scientific notation to ______ notation. If _____ is _____, move the decimal point in _____ to the ______ to the _____ places. If _____ is _____, move the decimal point in _____ to the ______ places.

Example 3: Write each number in decimal notation.

a.
$$7.85 \times 10^8$$

c.
$$1.001 \times 10^2$$

b.
$$9 \times 10^{-5}$$

d.
$$9.999 \times 10^{-1}$$

CONVERTING FROM DECIMAL TO SCIENTIFIC NOTATION

Write the number in the form		
π Determine, the numerical Move the		
point in the number to obtain a number		
than or equal to and than		
π Determine, the on The		
of is the of places the		
decimal point was The exponent is		
if the given number is than and		
if the given number is and		

Example 4: Write each number in scientific notation.

a. 0.00000006589

c. 0.234

b. 6,789,000,000,000

d. 1,000,234,000

COMPUTATIONS WITH NUMBERS IN SCIENTIFIC NOTATION

	0121111110 110 17111011	
MULTIPLICATION		
DIVISION		
EXPONENTI ATI ON		
After the computation is	, the	_ may
require an additional	_ before it is expressed in	
notation.		
Example 5. Perform the indicated operations, writing the answers in scientific		

Example 5: Perform the indicated operations, writing the answers in scientific notation.

a.
$$(3 \times 10^4)(4 \times 10^2)$$

b.
$$(2 \times 10^{-3})^5$$

c.
$$\frac{180 \times 10^8}{2 \times 10^4}$$

d.
$$(5 \times 10^4)^{-1}$$

APPLICATIONS

1. A human brain contains 3×10^{10} neurons and a gorilla brain contains 7.5×10^9 neurons. How many times as many neurons are in the brain of a human as in the brain of a gorilla?

2. If the sun is approximately 9.14×10^7 miles from the earth, how many seconds, to the nearest tenth of a second does it take sunlight to reach Earth? Use the motion formula, d=rt, and the fact that light travels at the rate of 1.86×10^5 miles per second.

Section 6.1: THE GREATEST COMMON FACTOR AND FACTORING BY GROUPING

When you are done with your homework you should be able to...

- π Find the greatest common factor (GCF)
- π Factor out the GCF of a polynomial
- π Factor by grouping

WARM-UP:

1. Multiply:

$$x^2 \left(7x^4 - 8\right)$$

2. Divide:

$$\frac{16x^4 - 8x^2}{4x^2}$$

FACTORING A	CONTAINI	CONTAINING THE SUM OF	
	MEANS FINDING AN	EXPRESSION	
THAT IS A			

FACTORING OUT THE GREATEST COMMON FACTOR (GCF)

We use the ______ property to ______ a monomial and a _____ of ____ or more _____.

When we _____ , we _____ this process, expressing the _____ as a ______.

MULTIPLICATION

FACTORING

In any ______ problem, the first step is to look for the _____. The _____ is an _____ of the _____.

The _____ is an _____ of the _____.

The _____ part of the _____ always contains the _____ of a _____ that appears in _____ terms of the _____.

Example 1: Find the greatest common factor of each list of monomials:

- a. 5 and 15*x*
- b. $-3x^4$ and $6x^3$
- c. x^2y , $7x^3y$ and $14x^2$

STEPS FOR FACTORING A MONOMIAL FROM A POLYNOMIAL

1. Determine the _____ factor of _____

terms in the _____.

2. Express each ______ as the _____ of the

_____ and its other _____.

3. Use the _____ to factor out the _____.

Example 2: Factor each polynomial using the GCF:

a.
$$9x + 9$$

b.
$$32x - 24$$

c.
$$18x^3y^2 - 12x^3y - 24x^2y$$

d.
$$7(x+1)+21x(x+1)$$

FACTORING BY GROUPING

1. _____ terms that have a _____

factor. There will usually be _____ groups. Sometimes the terms must be

......

2. _____ out the _____ monomial ____

from each ______.

3. _____ out the remaining common _____ factor (if one exists).

Example 3: Factor by grouping:

a.
$$x^2 + 3x + 5x + 15$$

c.
$$xy - 6x + 2y - 12$$

b.
$$x^3 - 3x^2 + 4x - 12$$

d.
$$10x^2 - 12xy + 35xy - 42y^2$$

Example 4: Factor each polynomial:

a.
$$x^3 - 5 + 2x^3y - 10y$$

c.
$$8x^5(x+2)-10x^3(x+2)-2x^2(x+2)$$

b.
$$7x^5 - 7x^4 + x^3 - x^2 + 3x - 3$$

d.
$$12x^2 - 25$$

APPLICATION

An explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The polynomial $72x-16x^2$ describes the height of the debris above the ground, in feet, after x seconds.

a. Find the height of the debris after 4 seconds.

b. Factor the polynomial.

c. Use the factored form of the polynomial in part (b) to find the height of the debris after 4 seconds. Do you get the same answer as you did in part (a)? If so, does this prove that your factorization is correct?

Section 6.2: FACTORING TRINOMIALS WHOSE LEADING COEFFICIENT IS 1

When you are done with your homework you should be able to...

 π Factor trinomials of the form $x^2 + bx + c$

WARM-UP:

Multiply:

a.
$$(x+1)(x+8)$$

c.
$$(x+1)(x-8)$$

b.
$$(x-1)(x-8)$$

d.
$$(x-1)(x+8)$$

A STRATEGY FOR FACTORING $ax^2 + bx + c$: USING GROUPING

- 1. Multiply the leading coefficient (in this case 1) and the constant, _____.
- 2. Find the _____ of ____ whose ____ is ____.
- 3. Rewrite the _____ term, ____, as a ____ or a
 - _____ using the factors from step 2.
- 4. ______ by _____.

Example 1: Factor each trinomial

a.
$$x^2 + 9x + 8$$

b.
$$x^2 + 7x + 10$$

c.
$$x^2 - 13x + 40$$

d.
$$x^2 + 3x - 28$$

e.
$$x^2 - 4x - 5$$

f.
$$w^2 + 12w - 64$$

g.
$$y^2 - 15y + 5$$

h.
$$x^2 - 9xy + 14y^2$$

Some	can be	using more than one
	Always begin b	y looking for the
		and, if there is one, it
out! A polynomial is		when it is written as
the	of	·

Example 4: Factor completely

a.
$$3x^2 + 21x + 36$$

b.
$$20x^2y - 5xy - 120y$$

c.
$$y^4 - 12y^3 + 35y^2$$

d.
$$(a+b)x^2-13(a+b)x+36(a+b)$$

APPLICATION

You dive directly upward from a board that is 48 feet high. After t seconds, your height above the water is described by the polynomial $-16t^2 + 32t + 48$.

a. Factor the polynomial completely.

b. Evaluate both the original polynomial and its factored form for t=3.

c. Do you get the same answer? Describe what this answer means?

Section 6.3: FACTORING TRINOMIALS WHOSE LEADING COEFFICIENT IS NOT 1

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ Factor trinomials by trial and error
- π Factor trinomials by grouping

WARM-UP:

Factor:

a.
$$x^2y-xy^2$$

c.
$$2x^3 - 6x^2 + 4x$$

b.
$$x^2 - 14x - 51$$

d.
$$z^2 + z - 72$$

A STRATEGY FOR FACTORING $ax^2 + bx + c$: USING TRIAL AND ERROR

Assume, for the moment, that there is no ______ factor other than _____.

- 1. _____ two First _____ whose ____ is ____.
- 2. _____ two Last _____ whose ____ is ____.

- 3. By ______ and _____, perform steps 1 and 2 until the _____ of the Outside _____ and the I nside
 - _____ is _____.
- If _____ such _____ exist, the polynomial is _____.

Example 1: Factor using trial and error.

a.
$$5x^2 - 14x + 8$$

b.
$$6x^2 + 19x - 7$$

c.
$$3x^2 - 13xy + 4y^2$$

d.
$$9z^2 + 3z + 2$$

A STRATEGY FOR FACTORING $ax^2 + bx + c$: USING GROUPING

- 1. Multiply the leading coefficient and the constant, _____.
- 2. Find the _____ of ____ whose ____ is ____.
- 3. Rewrite the _____ term, ____, as a _____ or a

_____ using the factors from step 2.

4. ______ by _____.

Example 1: Factor using grouping.

a.
$$3x^2 - x - 10$$

b.
$$8x^2 - 10x + 3$$

c.
$$9y^2 + 5y - 4$$

d.
$$12x^2 + 7xy - 12y^2$$

Example 4: Factor completely

a.
$$4x^2 - 18x - 10$$

c.
$$24y^4 + 10y^3 - 4y^2$$

b.
$$3x^3 + 14x^2 + 8x$$

d.
$$6(y+1)x^2+33(y+1)x+15(y+1)$$

Section 6.4: FACTORING SPECIAL FORMS

When you are done with your homework you should be able to...

- $\boldsymbol{\pi}$ $\,$ Factor the difference of two squares
- π Factor perfect square trinomials
- π Factor the sum of two cubes
- π Factor the difference of two cubes

WARM-UP:

Factor:

a.
$$3a^2 - ab - 14b^2$$

c.
$$80z^3 + 80z^2 - 60z$$

b.
$$12x^2 - 33x + 21$$

d.
$$-10x^2y^4 + 14xy^4 + 12y^4$$

THE DIFFERENCE OF TWO SQUARES

If _____ and ____ are real numbers, or _____ expressions, then

The _____ of the ____ of ___ of ____ factors as the _____ of a ____ and a ____

of those terms.

16 PERFECT SQUARES

$$9 =$$
_____ $49 =$ _____ $121 =$ _____ $225 =$ _____

Example 1: Factor.

a.
$$x^2 - 144$$

c.
$$25-4x^{10}$$

b.
$$16x^2 - 196y^2$$

d.
$$18x^3 - 2x$$

FACTORING PERFECT SQUARE TRINOMIALS

Let _____ and _____ be real numbers, _____, or

_____ expressions.

$$A^2 + 2AB + B^2 = \underline{\hspace{1cm}}$$

$$A^2 - 2AB + B^2 =$$

 π The _____ and ____ terms are _____

of______or _____.

 π The _____ term is _____ the

_____ of the _____ being _____

in the _____ and ____ terms.

Example 2: Factor.

a
$$9x^2 + 6x + 1$$

c.
$$x^2 - 18xy + 81y^2$$

b.
$$x^2 + 4x + 4$$

d.
$$2y^2 - 40y + 200$$

FACTORING THE SUM OR DIFFERENCE OF TWO CUBES

Let _____ and _____ be real numbers, _____, or

_____ expressions.

1.
$$A^3 + B^3 =$$

$$A^3 - B^3 =$$

Example 3: Factor.

a.
$$x^3 + 64$$

c.
$$128 - 250y^3$$

b.
$$8y^3 - 1$$

d.
$$125x^3 + y^3$$

Example 4: Factor completely

a.
$$25x^2 - \frac{4}{49}$$

c.
$$(y+6)^2 - (y-2)^2$$

b.
$$20x^3 - 5x$$

d.
$$0.064 - x^3$$

Section 6.5: A GENERAL FACTORING STRATEGY

When you are done with your homework you should be able to...

- π Recognize the appropriate method for factoring a polynomial
- π Use a general strategy for factoring polynomials

WARM-UP:

Multiply:

a.
$$(x+1)(x^2-x+1)$$

b.
$$(2x-3y)(4x^2+6xy+9y^2)$$

A STRATEGY FOR FACTORING A POLYNOMIAL

- 1. If there is a ______ factor other than _____, factor the
- 2. Determine the _____ of ____ in the polynomial and

try factoring as follows:

a. If there are _____ terms, can the _____ be factored

by one of the following special forms?

_____of _____:

			of		:	
			of			;
	b.	If there are		_terms	s, is the	a
						?lfso,
		factor by one of	the followin	ng speci	ial forms:	
				_ =		
				=		
		If the trinomial	is	a _		<u></u>
			try		by	and
			or			
	C.	If there are		or		terms, try
			by			
3.	Checl	k to see if any			with more th	nan one term in the
					can be fact	cored
4		If so), hv		completel	y.
			~ J		·	

Example 1: Factor

a.
$$5x^4 - 45x^2$$

b.
$$4x^2 - 16x - 48$$

c.
$$4x^5 - 64x$$

d.
$$x^3 - 4x^2 - 9x + 36$$

e.
$$3x^3 - 30x^2 + 75x$$

f.
$$2w^5 + 54w^2$$

g.
$$3x^4y - 48y^5$$

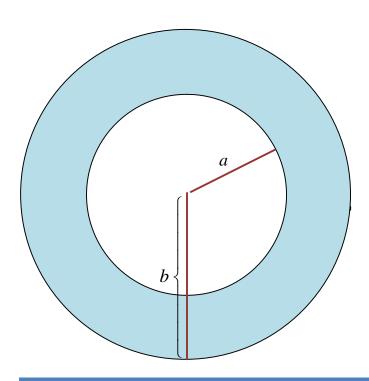
h.
$$12x^3 + 36x^2y + 27xy^2$$

i.
$$12x^2(x-1)-4x(x-1)-5(x-1)$$

j.
$$x^2 + 14x + 49 - 16a^2$$

APPLICATION

Express the area of the shaded ring shown in the figure in terms of π . Then factor this expression completely.



Section 6.6: SOLVING QUADRATIC EQUATIONS BY FACTORING

When you are done with your homework you should be able to...

- π Use the zero-product principle
- π Solve quadratic equations by factoring
- π Solve problems using quadratic equations

WARM-UP:

a. Factor:

$$x^2 - 8x + 7$$

b. Solve:

$$x - 7 = 0$$

DEFINITION OF A QUADRATIC EQUATION

A	in is an equation that can
be written in the	
where,, and are	real numbers, with A
	in is also called a
	equation in

SOLVING QUADRATIC EQUATIONS BY FACTORING

Consider the quadratic equation $x^2 - 8x + 7 = 0$. How is this different from the first warm-up?

We can	_ the	side of the		
equation	to get		If a quadratic	
equation has a zero on one	side and a			
on the other side, it can be	e	using the		
pri	nciple.			
THE ZERO-PRODUCT PRINCIPLE				
If the	of two or more		_ expressions is	
, then		one of th	em is	
to				

Example 1: Solve the following equations:

a.
$$2x-11=0$$

b.
$$x+1=0$$

c.
$$(2x-11)(x+1)=0$$

STEPS FOR SOLVING A QUADRATIC EQUATION BY FACTORING

1. If necessary,	the equation in form		
	, moving all	to one side, thereby	
obtaining	on the other side.		
2			
3. Apply the		_ principle, setting each	
	equal to		
4	_ the equations formed in s	tep 3.	
5equation.	_ the i	n the	

Example 2: Solve:

a.
$$x(x+9) = 0$$

b.
$$8(x-5)(3x+11)=0$$

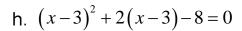
c.
$$x^2 + x - 42 = 0$$

d.
$$x^2 = 8x$$

e.
$$4x^2 = 12x - 9$$

f.
$$(x+3)(3x+5)=7$$

g.
$$x^3 - 4x = 0$$



APPLICATION

An explosion causes debris to rise vertically with an initial velocity of 72 feet per second. The formula $h = -16t^2 + 72t$ describes the height of the debris above the ground, h, in feet, t seconds after the explosion.

a. How long will it take for the debris to hit the ground?

b. When will the debris be 32 feet above the ground?

Section 7.1: RATIONAL EXPRESSIONS AND THEIR SIMPLIFICATION

When you are done with your homework you should be able to...

- π Find numbers for which a rational expression is undefined
- π Simplify rational expressions
- π Solve applied problems involving rational expressions

WARM-UP:

a. Factor:

$$x^3 - 8x^2 + 2x - 16$$

b. Solve:

$$2x^2 - x - 10 = 0$$

EXCLUDING NUMBERS FROM RATIONAL EXPRESSIONS

Α	expression is the	of two
	Rational expre	ssions indicate
and division by	is	This means that we
		any value or values of the
that make a		!

Example 1: Find all numbers for which the rational expression is undefined:

a.
$$\frac{5}{x}$$

b.
$$\frac{x+1}{x-4}$$

c.
$$\frac{8x - 40}{x^2 + 3x - 28}$$

d.
$$\frac{x-12}{x^2+4}$$

SIMPLIFYING RATIONAL EXPRESSIONS

A ______ is _____ if its _____ if its _____ and _____ or ____.

FUNDAMENTAL PRINCIPLE OF RATIONAL EXPRESSIONS

If _____, and ____ are ____ and ____ and ____ and ____ are _____,

STEPS FOR SIMPLIFYING RATIONAL EXPRESSIONS

1. _____ the ____ and the _____

completely.

2. _____ both the _____ and the

______ by any _____.

Example 2: Simplify:

a.
$$\frac{4x-64}{16x}$$

b.
$$\frac{6y+18}{11y+33}$$

c.
$$\frac{x^2 - 12x + 36}{4x - 24}$$

d.
$$\frac{x^3 + 4x^2 - 3x - 12}{x + 4}$$

$$e. \ \frac{x+5}{x-5}$$

f.
$$\frac{x^3 - 1}{x^2 - 1}$$

SIMPLIFYING RATIONAL EXPRESIONS WITH OPPOSITE FACTORS IN THE NUMERATOR AND DENOMINATOR

The _____ of two ____ that have ____ signs and are ____ is ___ .

Example 3: Simplify:

a.
$$\frac{x-3}{3-x}$$

b.
$$\frac{9x-15}{5-3x}$$

c.
$$\frac{x^2 - 4}{2 - x}$$

APPLICATION

A company that manufactures small canoes has costs given by the equation

$$C = \frac{20x + 20000}{x}$$

in which x is the number of canoes manufactured and \mathcal{C} is the cost to manufacture each canoe.

a. Find the cost per canoe when manufacturing 100 canoes.

b. Find the cost per canoe when manufacturing 10000 canoes.

c. Does the cost per canoe increase or decrease as more canoes are manufactured?

Section 7.2: MULTIPLYING AND DIVIDING RATIONAL EXPRESSIONS

When you are done with your homework you should be able to...

- π Multiply rational expressions
- π Divide rational expressions

WARM-UP:

Simplify:

a.
$$\frac{a^2 - 2ab + b^2}{a^2 - b^2}$$

b.
$$\frac{x^2 - 3x + 2}{x - 1}$$

MULTIPLYING RATIONAL EXPRESSIONS

If,, then	_,, and	_ are polynomials, where	_ and
The	of two		is
the	of their	, divided by the	
	of their	·	
CREATED BY SHANNON I	MADTINI CDACEV		
CKENIED DI SHANNON I	VIAKTIN GKACET		217

STEPS FOR MULTIPLYING RATIONAL EXPRESSIONS

1. _____ all _____ and _____.

2. _____ and _____ by

common ______.

3. _____ the remaining factors in the _____

and _____ the remaining factors in the _____

Example 1: Multiply.

a.
$$\frac{x-5}{3} \cdot \frac{18}{x-8}$$

c.
$$\frac{9y+21}{y^2-2y} \cdot \frac{y-2}{3y+7}$$

b.
$$\frac{x}{5} \cdot \frac{30}{x-4}$$

d.
$$\frac{x^2 + 5x + 6}{x^2 + x - 6} \cdot \frac{x^2 - 9}{x^2 - x - 6}$$

DIVIDING RATIONAL EXPRESSIONS

If _____, ____, and ____ are polynomials, where ____, ____,

and____, then

The ______ of two _____ is

the _____ of the ____ expression and the _____

of the _____.

Example 2: Divide.

a.
$$\frac{x}{3} \div \frac{3}{8}$$

c.
$$\frac{y^2 - 2y}{15} \div \frac{y - 2}{5}$$

b.
$$\frac{x+5}{7} \div \frac{4x+20}{9}$$

d.
$$\frac{x^2 - 4y^2}{x^2 + 3xy + 2y^2} \div \frac{x^2 - 4xy + 4y^2}{x + y}$$

Example 3: Perform the indicated operation or operations.

e.
$$\frac{5x^2 - x}{3x + 2} \div \left(\frac{6x^2 + x - 2}{10x^2 + 3x - 1} \cdot \frac{2x^2 - x - 1}{2x^2 - x} \right)$$

f.
$$\frac{5xy - ay - 5xb + ab}{25x^2 - a^2} \div \frac{y^3 - b^3}{15x + 3a}$$

Section 7.3: ADDI NG AND SUBTRACTI NG RATI ONAL EXPRESSI ONS WITH THE SAME DENOMINATOR

When you are done with your homework you should be able to...

- π Add rational expressions with the same denominator
- π Subtract rational expressions with the same denominator
- π Add and subtract rational expressions with opposite denominators

WARM-UP:

Simplify:

a.
$$\frac{b^2 - a^2}{a^2 - b^2}$$

b.
$$\frac{x^2 - 2x + 1}{1 - x}$$

ADDING RATIONAL EXPRESSIONS WITH COMMON DENOMINATORS

are	_ expressions, then
rational expressions with the	
and place the	over the
If possible,	the result.
	rational expressions with the and place the If possible,

SUBTRACTING RATIONAL EXPRESSIONS WITH COMMON DENOMINATORS

If _____ and ____ are _____ expressions, then

To ______ rational expressions with the ______,
subtract _____ and place the ______ over the
______ If possible, ______
the result.

Example 1: Add or subtract as indicated. Simplify the result, if possible.

a.
$$\frac{x}{15} + \frac{4x}{15}$$

c.
$$\frac{x}{x-1} - \frac{1}{x-1}$$

b.
$$\frac{x+4}{9} + \frac{2x-25}{9}$$

d.
$$\frac{3x+2}{3x+4} + \frac{3x+6}{3x+4}$$

e.
$$\frac{x^3 - 3}{2x^4} - \frac{7x^3 - 3}{2x^4}$$

f.
$$\frac{x^2 + 9x}{4x^2 - 11x - 3} + \frac{3x - 5x^2}{4x^2 - 11x - 3}$$

g.
$$\frac{3y^2 - 2}{3y^2 + 10y - 8} - \frac{y + 10}{3y^2 + 10y - 8} - \frac{y^2 - 6y}{3y^2 + 10y - 8}$$

ADDING AND SUBTRACTING RATIONAL EXPRESSIONS WITH OPPOSITE DENOMINATORS

When one denominator is the ______, or ______ either rational expression by _____ to obtain a ______.

Example 2: Add or subtract as indicated. Simplify the result, if possible.

a.
$$\frac{6x+7}{x-6} + \frac{3x}{6-x}$$

c.
$$\frac{4-x}{x-9} - \frac{3x-8}{9-x}$$

b.
$$\frac{x^2}{x-3} + \frac{9}{3-x}$$

d.
$$\frac{2x+3}{x^2-x-30} + \frac{x-2}{30+x-x^2}$$