ELEMENTARY LINEAR ALGEBRA WORKBOOK

CREATED BY SHANNON MARTIN MYERS

LINEAR SYSTEMS, MATRICES, AND VECTORS

Now that I've been teaching Linear Algebra for a few years, | thought it would be great to integrate the more advanced
topics such as vector spaces, the Euclidean dot product, and matrix operations early on in our class, instead of hurrying
to fit everything in late in the course. So...hold on to your seats...we’re in for a bumpy ride!

1.1 Linear Systems and Matrices

Learning Objectives

1. Use back-substitution and Gaussian elimination to solve a system of linear equations
Determine whether a system of linear equations is consistent or inconsistent

Find a parametric representation of a solution set

Write an augmented or coefficient matrix from a system of linear equations
Determine the size of a matrix

vk wnN

Let’s Do Our Math Stretches!
1. Solve the following systems of linear equations

a.
-x+8y =3 ?\\
6x =12

-%"35:3 > tKL_’
R

(2,53
Cqss'\s\'m{- 63ﬂzm
with ‘ndegendent
thmb

‘-)L&‘Bt)’s 2 ‘1’51
=1

" 3x+y —-z=15 _;x: (Z
+4z=0 =P Y=~
Gt
(2,18
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DEFINITION OF A LINEAR EQUATION IN n VARIABLES

A linear equation in n variables X., ) & x; -..!& has the form

AX AR YRt AR = b

\ ¢
The S a,,a,,d,,...,a,are ‘m‘ numbers, and theunﬁm_term bis areal

number. The number g, is the ‘QﬁJinC\ M, and X 8 istheleading

variable. J

*Linear equations have no M or ‘m é of variables and no variables involved in
mﬂw functions.

Example 1: Give an example of a linear equation in three variables.

A, 40X, +3%, 218 = Uy, ¥I%,=10

DEFINITION OF SOLUTIONS AND SOLUTION SETS

A solution of a linear equation in n variables is a of n real numbers §,,5,,85,...,5,

arranged to satisfy the equation when you substitute the values

X5, %32S;,%32 S5, ...; Ko On

into the equation. The set of ﬂ“ solutions of a linear equation is called its SQ'U’H on Sl-“' ,

and when you have found this set, you have \ the equation. To describe the entire solution

set of a linear equation, use a ‘)A! mg;k! W representation. M M M\aﬁjdodl”"ﬁ

Example 2: Solve the linear equation. -
x+x=10 =9 X = lD-x.b (.0 t)t ) t eKi
) u-’—"—"""

Let Xp=t ) X, =12~ ¢ deusoribe tre m;,,,md

Sorw of Are 4

soltion (£) and for limi¥atiens
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Example 3: Solve the linear equation.
2x, —x, +5x; =-1.

% =%5'5 ) S \)

]

(-7\;(1;-58'!)) L, 3)1 Ste P‘%

SYSTEMS OF LINEAR EQUATIONS IN n VARIABLES

variables.

A system of linear equations in n variables is a set of m equations, each of which is linear in the same n

a X + a,Xx, + a3 X, oo
a X, + ayX, + Ay X, qFons

as X + azy X, + a3 X5 qFaoo

+a,x, =b

+a, x, =b,
+a,,x, =b,

+a,x =b

a, X +am2x2 +am3x3 qFeeo

SOLUTIONS OF SYSTEMS OF LINEAR EQUATIONS

A solution of a system of linear equations is a S%!M‘}Q& of numbers §,5,,5;,...,5,thatis a
solution of each of the linear equations in the ﬁ%ﬂ!ﬂm .
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Example 4: Graph the following linear systems and determine the solution(s), if a solution exists.

o 3

L7
3N

c2‘x—2y=16 -3 x—ﬂ 21
3x—3y=t"¢ X -! e

B

T gt ¥

%(’w?,t): tg?u%%
i5fant .
V\c\:?‘\?’:b o\n-pe.njami’ agpshions
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NUMBER OF SOLUTIONS OF A SYSTEM OF EQUATIONS

For a system of linear equations, precisely one of the following is true.

The system has D‘ﬂ solution. ( (Q gﬁ\s*gﬂ system).

The system has A M%_ solutions (_Cmm system)
. \

The system has _{\) 60h|.hm (Mystem).

TYPES OF SOLUTIONS

2 Equations, 2 Variables
What did we learn from the last example?
Inconsistent:

Part\M\e| \\nas

Consistent:

Lross ok dne painy
ar (AN \resf

3 Equations, 3 Variables

Inconsistent

Parallel Planes Intersecting Two at a Time (1) or Intersecting Two at a Time (2)
Consistent

Dependent: Linear Intersection Planar Intersection

Irldependent:

./ A '
SN
N,
N\
<«£k

¥ Point: (3.-1,1)
m«:[:’ v |size: 7

» Eq:z=1

v Eq:-y+z=2

@ Eq: x+y+z=3
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OPERATIONS THAT PRODUCE EQUIVALENT SYSTEMS

Each of the following operations on a system of linear equations produces an W\‘M

system.

Ad[i two equations.

" an equation by a ||an0 constant.

Ma mn'flpl-t of an equation toM_&Lequation.

The evil plan is to get the system into ‘ [> JTAY 'gébglon form.

ay X, +a,x, +a,;x;, =b,
ayX, +ayX; =b,

ayx; = b,

DEFINITION OF A MATRIX

If m and n are positive integers, an 72X 1 matrix (read _f) hj N ) meer®isa ﬂhﬂa‘&m
array

a, dp a,
A= a, a.zz a,,
_aml am2 amn |

in which each Lﬁtﬂé_, aij , of the matrix is a number. An 72 X 17 matrix has m rows and 7 columns.
]
Matrices are usually denoted by M‘Zl +al letters.

*The entry a; is located in the ith row and the jth column. The index i is called the (m

.| ﬂdg& because it identifies the row in which the entry lies, and the index j is called the
_wj_mn l“d&‘ because it identifies the column in which the entry lies.
**A matrix with m rows and n columns is said to be of S4 L{o !!)*ﬂ .When_M =N , the

matrix is called zym&of order n and the entries q,,,4a,,,a,,,...are called the _mm_

entries.
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THREE IMPORTANT TYPES OF MATRICES

1. W Matrices are square matrices with ‘ﬂ"ﬁ along the main

and zeros ‘_‘Mh 0f L= . The main diagonal goes from the top lg£ i corner to the
bo{"\'am right corner.

o 0 ¢ 9 ,
2. Q&Sg i( Aﬁ Matrices are formed using the Mf the jg\_(!hks

in systems of linear equations.

3. %MMMatrices adjoin the coefficient matrix with the column matrix of Ml

Example 5: Consider the following system of linear equations.

X —x, +x3=2 b;LA\El

—x, +3x,-2x, =8

2x,+x, —x=1

a. Find the coefficient matrix (matrix of
coefficients) and determine its size.

A r'l -\ ‘L : -\ ;1 c\ze,
— -\ 5 » SN2% - §‘L P
47,14)3"3 AR T

b. Find the augmented matrix and determine
its size.

T (2
c. Solve the system and determine if it is consistent. t e 3
-y L& -V )

B2\, 2 -2\4 | 2re e
21 - L] [awire s
_ - "‘ ‘ L
%wn"’ﬂ-’)‘ @ 3{’5 7 Yo z -‘\.ﬂ
AN 5097 ("0 o %)

- -, ¥\X, =

L= | 1 -y V|2 LR, = WA ¥R, ™

¢ 0 2 -\ O J 7—*:'\"3“0
L o Vv -l |-} - 11,30
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d. Check your result using Octave, which has the same commands as Matlab but is free©.
i. Gotothe very bottom of the page and enter the augmented matrix. | named the augmented

matrix B. You use brackets to designate a matrix, use a 5‘)& (d' V) between entries, and a
[ 4
2!!\\ LQ'DY\ between rows.

B=101-112;-13-28;21-11]

ii.  After hitting “enter” the screen looks like this (you’ll have a different command line number):
octave:18> B = [1 -1 1 2;-13 -28; 21 -11]

Now type in rref(B) to get the reduced row-echelon form of the augmented matrix:

octave:18> B = [1 -112;-13 -28; 21 -11]
B =

-
w
N
)

rref(B)|

After hitting enter, you'll see:

octave:18> B = [1 -112;-13 -28; 21 -11]
B =

1 -1 1 2
-1 3 -2 8
2 1 -1 1

octave:19> rref(B)
ans =

1.00000 0.00000 0.00000 1.00000
0.00000 1.00000 0.00000 11.00000
0.00000 0.00000 1.00000 12.00000

iii.  How should we interpret the results?

—

Y 2 s )
ix, W = %(‘1“)‘7')?)
Wy € V2 [ansisert 5340"\ |
With indegaident Hquations
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1.2 Gauss-Jordan Elimination

Learning Objectives

1. Use matrices and Gaussian elimination with back-substitution to solve a system of linear equations

Use matrices and Gauss-Jordan elimination to solve a system of linear equations
Solve a homogeneous system of linear equations

Fit a polynomial function to a set of data points

Set up and solve a system of equations to represent a network

vk wnN

Let’s Do Our Math Stretches!
1. Interpret the following augmented matrices.
a.

1008
0107 — ;L.:Ql 1,}:1}13:‘5
0015

' Ry =1 X7 KT,

T

0 1 3 11

X t9%,% I > X,= -3%,
ek x;=t, K, 20\-3k X 4-50
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ELEMENTARY ROW OPERATIONS

1. Ada two rows.
2. M !&! k |‘ P‘% arowbya I\Qﬂlﬂfo constant.

3. AAA a mﬂﬁﬂg of a row to MO‘\'M row.

. Mdm,n%& (SWAD ) any 2 rows.

Note: These operations also work for columns.

DEFINITION OF ROW-ECHELON FORM AND REDUCED ROW-ECHELON FORM

A matrixin { Qg)'ggbglgn ‘ Cd form has the following properties.

Any rows consisting entirely of &Q occur at the bottom of the matrix. For each row that does not
consist entirely of zeros, the first nonzero entry is \ (called a leading ‘ ). For two successive nonzero

rows, the leading 1 in the higher row ? farthe[)to the _\4£“'_than the leading 1 in the lower row. A matrix
Cref

in row-echelon form is in EMLM@_ form when every column that has a leading 1 has

2.e5905 in every position above and below its leading 1.

Example 1: Determine which of the following augmented matrices are in row-echelon (ref) form.
a. b. C.

{1\_1} 1 -1 0}3 11 -1(-8
2 0 1 0|7 00 125
‘6‘0\\\) 0 0 1]I2 0 1 15]|-3
laoooms' o
bt et 02k

GAUSS-JORDAN ELIMINATION

1. Write the ﬂl%ﬂﬂm‘ matrix of the system of linear equations.

¢
2. Use elementary row operations to find an qgs\‘ﬂm! matrix in _{gdv.atd
row-echelon form. If this is not possible, write®the equivalent system of equations and back substitute.

3. Interpret your results.
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Example 2: Solve the system using Gauss-Jordan Elimination.

a.
X, +x,-5x;,=3
X, -2x,=1

2x,—x,— x,=0

1 -9\3
b= lo‘z\‘
2.-\ =11 O

\ %
L QL

L1 =915
o-\ 3
21 )

g

Y
IR <%

\ -5(2
‘04 ?\’%/X
o-34\-b

AW
,3% ‘-&5 a%

A
AN 53.\,1;\
00 p o
kX~ 5%y 7
IR 2 TS
Oso ‘\’Wa’u

x\

L

|

ﬁ )\t > 9"(7."5’(3
Ky

Ayt L

X
~ T
e
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5x, —=3x,+2x; =3

2%, +4x,— x, =7 (5 - 2 3
xl—-llx2+s4x3~:33 , |3 ) 20 -4 |24
=12 94 |7 o O O {10
| ‘H K |5 Vv

-z&u+§¢.z-7&z _

9 % 2 \? G*, DA b LRs 5
0 10 -121 20%, WU, > 21
Vo 4|5 L R
-g'*g&3433 '5

S -5 7

% NP

—~

J 26 -1 |29

OSL 8|l 2 g , 0N iNcoNSiSreny

436%@0\0 with indapard e

|

waHono.

DEFINITION OF HOMOGENEOUS SYSTEMS OF LINEAR EQUATIONS

Systems of equations in which each of the _Lgtherms is zero are called
_hamdam&)@ A homogeneous system of m equations in n variables has the form

a,x, +a,x, +a,x; +--a,x, =0
Ay X; + Ayy Xy + gy Xy +20-a,y, X, =0

Ay, X, + X, +ayx, +--a;,x, =0
o ° L ) .
° L]
U . 0 g
a,x+a x,+a x;+---a x =0

a . -
**Homogenous linear systems either have the kii VA G.Q solution, or Jn&mj%..

!E Q_n% solutions

CREATED BY SHANNON MARTIN MYERS
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7("1’1-%3 X‘l’
| I I

Example 3: Solve the homogeneous lin ar system orre.i’ondmg to the given coefficient matrix.
<) O

1 0 00 ‘

0110

= O

O

*,

- - S %, °C
/\,w, Sgg‘n{sﬁ;f‘uﬂ
(o,-3, g, ) Q/tée'i:,%udud'% s

L

THEORHKT 1.1: THE NUMBER OF SOLUTIONS OF A HOMOGENEOUS SYSTEM

Every homogeneous system of linear equations is g ,mgtil@ﬁ . If the system has fewer equations

e

than variables, then it must have ) (1) solutions.

4 w

POLYNOMIAL CURVE FITTING
Suppose n points in the xy-plane represent a collection of__daﬁl_ and you are asked to find a

?bhﬁﬂh& function of degree _ N~ \ whose graph passes through the
(4 » *
specified points. This is called #lamm& ML Ve J’bﬁ:ggg ; .If all

x-coordinates are distinct, then there is precisely _&& polynomial function of degree n— 1 (or less) that

fits the n points. To solve for the n Mﬂ_‘ﬂtsof p(x), M each of the n

points into the polynomial function and obtain n JSM“ equations in I\ __ variables

Ay, 0y, 0,,...,4, .

n
+ax, +a,x’ +-- =
aO alxl ale an—l'xl - yl

2 n-1 __
a, + a,x, + a,x, +-- a, X, =)

2 n=1 __
a, +Cl1x3 +a2x3 +"'an_1x3 =W

n—1

2 —
a, + ax, + a,x, +-. a, X, =V,
. ________________________________________________________________________________________________________|
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Example 4: Determine the polynomial function whose graph passes through the points, and graph the

polynomial function, showing the given points.
(1,8),(3, 26),(5,60)

n=3% beon2 N2 have 3 ocdased pocs

n-| = 2

>
PIL) za, ¥ A% ra)l

2
P() *8 20, +0,0) ¥a (1) = a,ra ra,
P(3) =20 = a, t a,3) +a.P° a2, r32.1 92,

PLS)

Y 4
240 = 4o +a,(5) +a,(5) = a,

A S I .
vo ro. <2 ""D,‘, 9V 4|4
Ao 5‘.' > & 0 L‘ L“ 6Z‘

a, v3a, tAa? 2=
R, rg“a*zga’zbo
) 2
3 q ”’]
525 |

v de vl

v
TR
232,

(\Y\ g

A, ba ya. =z 2
a, +4a,=
ga.>V=

%
CREATED BY SHANNON MARTIN MYERS ?( ”) - 6 + x + Z%
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NETWORK ANALYSIS . .

Networks composed of ( and M are used as models in fields like
economics, traffic analysis, and electrical engineering.¥n an electrical network model. you use Kirchoff’s Laws
to find the system of equations.

Kirchoff's Laws

1. Junctions: All the current flowing into a junction must flow out of it.

2. Paths: The sum of the IR terms, where | denotes _Lm and R denotes Mn

any direction around a closed path is equal to the total voltage in the path in that direction.

Example 5: Determine the currents in the various branches of the electrical network. The units of current
are amps and the units of resistance are ohms.

PATH + ABCDA cusdent
II. *213 b | 10*13 *dg
PATY: BLDE
ZIs 5 ’iz M e
’\_/\/ —_——
-, *213 e 9 T, 1A
I+, - T5°9 T|L,23A

35, #2135 ° 25 04R
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Example 6: The figure below shows the flow of traffic through a network of streets.

400 600
300 100
Solve this system for x,, i=1,2,...,5.
400 ¥x, = X, X=X =40
A, ¥ )(3; = é:(!”%r)tt‘ X, '*'7‘:;f'>‘i( =S
=\
Agths 1D Xtxs =
B0 TRy ¥y g Xob Xy AXg33W

Find the traffic flow when x; =0 and x, =100. w
3 5 ' 0 ’ - . d

2,3 130 -9 -\ =060 20 4 1|12
—o -1 =20 o

x, 3 30 9 lor Vo ’\;”/J
sz

)(qslx)’@dsd des‘;(C‘) ) o O\Ll 10 ]
Find the traffic flow when x; = x5 =100. Qo | |3
2,2 100 =100~ (39 = 552 o; 50 0 102

! o) ~I1I20 = |02 o2 2 S
)(tsw" o 9 aad/ 2

)(“7 |w—u=o-‘-0mzd x33153‘¢ b

CREATED BY SHANNON MARTIN MYERS x‘ =2 7& ’x3’xs 16
Aoz 300 = Ay =X53
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1.3 The Vector Space R"

Learning Objectives

1. Perform basic vector operations in R*> and represent them graphically

2. Perform basic vector operations in R"

3. Write a vector as a linear combination of other vectors

4, Perform basic operations with column vectors

5. Determine whether one vector can be written as a linear combination of 2 or more vectors
6. Determine if a subset of R"is a subspace of R”

VECTORS IN THE PLANE ) .
A vector is characterized by two quantities, Jﬂ{\j 'Hn and A ((60‘1941 ,and is

represented by a MML Sam 2n‘|’ . Geometrically, a MI in
J . ‘ . .
the M is represented by a directed line segment with its (] ﬂ—\ l !aQt ngd at the origin

and its M point at C‘x’\’\ Xz.) Boldface lowercase letters often designate m

when you're using a computer, but when you write them by hand you need‘tf write an _MAL

v
above the letter designating the vector. (" V)
»*
Ay \
Vi
y !

VY
4

The same m PNV used to represent its terminal point also represents the
-
Aﬂd‘o‘. .Thatis, X = (".)x&,).The coordinates x, and x, are called the

m of the vector X . Two vectors in the plane u = (ul,uz) and v= (vl,vz) are

%M_ ifand onlyif _ W %= Vi and J_z,’ \’1 . What do you think the zero vector is
> - -
for 22 D 2 £Q102 How about R*? @ = (O',O/ 0) R? O = /0,&,0,"40/0)
-
d = (ojo/o/.’. )a)

SO S
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Example 1: Use a directed line segment to represent the vector, and give the graphical representation of

x=(2.1)

the vector operations.
a. =(3,-2
u=(3,-2)

=

(| “ ] ] 1 11 1 1 ]
SEp—— * "‘Y—Y' T A | —0~1>—p? r —o—q}—tv—- r—c—IT—
[ Gt gt s < L S S 4 B S N W ) [E B 21 el B ost SRR B S B S
- d g H 44 H Ll 14 3 14 |

i | | |
rrrrrrrrrrrrrrerrrrrrr b BN S SR 2 BB S & - —r-'ﬂ'r*vﬂ'"r-» Qf‘I—
| | !
LI B ) .- . 3 .4 b
| ! ! 11 .- . 3 ™1 P !
+t+tt1+ T+ttt e P-4 >—4—p—t—4——s—2—F4—0-08 —++—4—4—4—+¢ }.y‘o
1t - * ™1 - 1t - + S
P ] R e o R o e N e R o agcpme = s s a0 b ) 4-:-
1 ! - O 2
anfesdpmpand s s e Sengenguedadh - .- 4 . et s
] | } R ¥ ] |
- - - - e - . & 4
| | i Y 1 — 1t -
ﬁ 1 R '} 1 5 1 i 1 {
/\ = —a-4-o s ot 4B+ . U ,@‘ b e -b-n b4 = ¢‘5
—e v - r—o ’?*'éz b me onn o ¢ 'i 11
- e . . =g ror o T oo .‘L.. | .- - o f—p—w : - .‘ -
| i
.- Sed 4 4 dd 4 LLlll 4 | Ledd H
i i ! | L !
i } | i ) {
e — B mae e o \ ""T'P Qg e iy gy e g (e
—-0-b-o L ) .o | [ 2 e-b-o e bon .o . : .-
: 4 4 + | ) |
4+ -+ - - + i +
1 : | 4 - 1 .
—rrw rrrt--r-v‘rn7- b G o ——p—9 ™ Tt T rrrrrerr:
S XERENM ﬂ | ' Skl R E R =WM | |
I 1 ’ i T | | ) 1 | 1¢ ;T | !
I ] - 3o ]
O s RYC I Teh 13-H-H-HHHH
. e l‘ L dat o < . S T 1 .- L - [R B 20 aaal 250 aa SE ] : o
{ | i 1 ) |
... . H - H ’ls*z z*‘ ’ | . B H 5 - s
{ L
{ i |
———p—Q——t— y - —r » 1~r—n-ql-r-b p— . r——Pp—¢—t—t—r——P—* ~r—-f<—r 11— r—
i {
LI B ) .- . » .- poe
| ! -1 Reefempeny .- . ' ] 7 P
44— +—+++t+T1r1r 2 P) o4 b @ 449 4B 4 b 4-¢ @4 ¢ P-4
=ttt * ™1 - B - - + ™ *
ettt N B W | “‘) S Sy e T T B e e o B Sl B S 3
S s % - s H ’_! ) o 1M e | | fed |
==t 1 1 @ Y -+t o P 1t
D wuwy 10 ST
/\ .oy D R s o 4 R / ‘e .. . bow I D S St &
assl i3] T BE ’FI ' | “T T —v—v——‘v—"—<— 4+ —+ 1 f ™~—r—
r—t—p—o . g - -
‘ ] ! 1 IREEEE YL ) I 1 1
| W5 .- . ' e s - - - Qu - . d 4
| | ! | | !
1 | I } {
N R B S 1 ™ T T rrrrrrrrTrT —r—y—p—t -ttt
[ S 1 L ) .o ™1 [ LR ] - b .o ) 1 .
i | i |
e - - 1 - ‘sz-z(z,') . s . - -
>——r—¢ T errrrrrrrerert -1~ e r-,rnl— A
- --- ' . | . S s - b - e
x .Aﬂd 1 1 3(.2(), 2) B ! !

IMPORTANT VECTOR SPACES

2. = |- 690(& = the set of _ @&\ _m.smhu_s .
2 = 2 =the set of all &I S of real numbers.
= = 2 =the set of all 10)esS of real numbers.

R>
_@_n = Nn- 5‘00& = the set of all _a_dg_fdd Q_{MI.&S of real numbers.

n
DEFINITION OF VECTOR ADDITION AND SCALAR MULTIPLICATION [ K’ J

>

9 n
Let U = (ﬂ.,“s‘..., n)jnd y3¢§[“!z'.,.,wln> bevectorsin ,and let (:,éK .

Thenthesumof _JA and _y__isdefined as the Ve ot UtV s J ,,-W,,)

andthe _Cca]ar multiplication of _ A by € s defmed as the yg; :\g{ ,
’ u (' o ® 0 .
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THEOREM 1.2: PROPERTIES OF VECTOR ADDITION AND SCALAR MULTIPLICATION IN R”

Let u, v, and W be vectorsin R”, and let cand d be scalars. Lg-\o ? 2 (uu"z,--';uﬂj'\?: (V J CJ
1) 1»[‘0.)
pJ

ADDITION: R (u).,u),.,...)u.l,,)) Vi g s
1. u+visa yo,c\‘or in R". t,lﬁufl— L1750 ',ﬂl,z.,..,‘
Proof: & K’ and.
c,delk.
2. u+v= ‘Q*d ‘zommglaﬁ~fbproperty
Proof: - Jd
TA"\'? > (M”\h.,---,\ln)-l' (\J”\l,/ "‘)\l"\ =V +u//
= (), UV, ... Ugk, ) defi. veded +
IS camm )
= (Viw,, Vgt Vot ) R i
= (N VgyeeesVa) + (gqu'"“ﬂ) defn ved. =
3. u+(v+w)= (ﬁ#‘\?)‘fﬂ _ASﬁaﬁla)th property
P . -
4, u+0=_)A additive Qd‘ﬂhiﬁr property
~
5 u+(—u)= 0 additive (W@ S$%  property

SCALAR MULTIPLICATION:

6. cuisa 3[;(*2[ in#®e R". c,‘mu‘&z

> 2 N
7. c(u+v)= Cu ¥V muhyel_property

Proof:

el R4V) = C[(\M,uw"-:un)?(\I.,V,,...,\‘;)]
2C (“c"'\’l, U¥Vy oo UqtVpn ) defn gec. +
= (c(utv,), L (63tN3), ..., & (Watvn) ) deta vec scal .wutt.

= (eu,¥CN, UL ¥y, , - -, Coat cup ) P distiibutes

w ?a%j. Mb\). ve
8. (c+d)u= i +dn MK V& property
9. ¢(du)= (Uk)i GSSOC.QGHVO property

=Y

10. 1(u)=__W MﬁMﬁ idm“*\kroperty
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(e, Gy, 0 ) (0 0y, oee o) defof
¢lu,,u =
1) L)"‘/\A“’)*C(Vn\hr“n\ln) o\vQ‘FnoS}
Jec. . Sl -ty

-
-

i

vl y

"



Example 2: Solve for w, where u = (2,—1,3,4), and v= (—1,8, 0,3) )

N a. w:u:—\; R b. w+3v=-2u

w+ﬁ-u=‘~l ~u T By
Srdr(-8) 2 (V2 R=(42460)- (53U
- — - =\l _

S+3 =182y (21 9] E=(-l7w;b,-n)

S o(n‘lﬁ‘l)

DEFINITION OF COLUMN VECTOR ADDITION AND SCALAR MULTIPLICATION

Let u,,u,,...,u,, v,v,,...,v, ,and cbe scalars.
u, v, u, +v u, cu,
u v U, +v. cu
2 + 2 — 2 2 and c 2 — .2
u, v, u,+v, u, cu,
3T - )T
18 41
Example 3: Find the following, given that U = —1| and V=| 6.
31 -3
9] |15 ]
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THEOREM 1.3: PROPERTIES OF ADDITIVE IDENTITY AND ADDITIVE INVERSE

Let vbe avectorin R", and let ¢ be a scalar. Then the following properties are true.

1. The _addihve Algﬂ‘h_.%i M%M-—

CONPrU
(3 +R)AEN + (—v)
a@'ﬂ«‘n] 3
u‘)D 50
=9

L e cddi v identily is uniqus - 4

2. The _addihive  javefse is _unique.
-
3. ov= O
—
4. c0= O
2 -
5 Ifcv=0,then €0 or V20
>

LINEAR COMBINATIONS OF VECTORS

An important type of problem in linear algebra involves writing one vector as the é\lﬁ\ of
S(M of thP\QS of other vectors v,,v,,...,v, . The vector _¥ ,

- ] - - - ' . .
%2 CV i+ GV b tCaniscalleda 1 WNQOL b0 AN of the vectors v,,v,.,..., v .

Example 4: If possible, write u as a linear combination of v, and v,, where v, =(1,2) and v, =(-1,3).

a. (0 3) Ld ) mku Cb. u—il;—li )
=2 ol ke, (03)25(2+%(13) :;ﬁ‘
(03)-('.,(\1)'\1‘(4 %) ¢
(D 3) (C))%\)"('Ct ZCL)

(015)3 (C\ ('?')ZC' “'3('2-)
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S -
b) u = (,\,-\) , N, 2 (\)ﬂ) )f,z‘s(-\);)
D Y -~
¥ FCV,= U
Cu(‘fl)'\'cbc’\ls) ;(‘)“)

C|"C'1,: \
¢c7_+3C1,"‘
-\ \
b: [\ _ ] 2 - é. _ -
273l 5(\1)-30,3)= (1)
-1 1oL
v - | 3 2D
[0 5 \'—7’] 5 =%V')“’g
V) obia
ot + 22 7 a (50* (o?. '“N\'j
5 0 Zl welor o \’6\\'\3&-
{() 5 L?) RINQBC casnbimedion
Vv ok Haveckars m G
o |%s ' \
7] PO
2
C,*5



Example 5: If possible, write u as a linear combination of v,, v,, and v,, where v, = (l, 3,5) ,

v, = (2,—1,3), and v, = (—3,2,—4).

u=(-17,2)
C,(',’J,S) ‘l’Ct(L;\)ﬁ) +c,(—5,$,~q) = (a\’q’z)
c’ +zc; 6(}3 =2 skw
36." Ca ‘\‘7—C-3 e S 65

Sc, +5¢, -y © z ‘“(0'6‘
i‘\' 15 net pd:stk\ﬁ lo mﬁ\—gﬁo.sa\‘\wcoib‘\\d'\w ]
) o the vaclers Wi, ,\l,) o

WHAT THE HECK DOES IT ALL MEAN??

Any vector space consists of Lt entities: a 52;‘: of m S ,asetof
n

,S_m |a.($ ,and 2' operations. Currently, we are only exploring the vector spacej_l_ﬂ_‘

al Fhe Jire 4= 4%
Let’s think about the following subset of R”: - S Spurs Aine 0
S={(X,%XJZXER} = /r‘-——z—’

Is the set S a vector space? Let’s find out!

.a-‘ K -
LC-‘\' u= (ub)i“')'v = (V., JZ-\") ) W = (w; )%w> and M.)\I.‘U)“Cld é&

1. Closure under addition.

TUE DY (uhl.)i(uw))]’(\s
d"‘\,:(uu)iu‘)*("n%"') /
= (u.-]-\l. V] %«u‘ t 17'/"') d‘%v@d’%- S
2. Commutativityunderaddition. "’ = V*\’-\i Vs

= (u,,5%) ¥ (v ,3%)

= (Wi, , B rEn) depo vect ¥
= (V, »u.,i" *Lu.) R iS5 mn.
s (4, 5w+ (u.,%,U)MnM*._
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3. Associativity under addition.

Ur(VeR ) = (u“iu.)‘. X.(v‘ 34) f(“)‘)iw‘)l
* (u,5) + ( Viw,  Eu Y ‘i”‘)-mn vet}
= (u,‘\r(dmb,)’ bu, + (Jzo.+_liu>.))l
s (Qu, )+, (B4 riv)x 30, ) R isassx (+)
2 (v, BrEn) ¥ (g, 5 ) dedn veck &
< [lu,50)+ (0,2 ) r ¥ 2(247),2 L

4. Additive identity.

T+d = (u,4u)t (O, 3-0)
(w0, y4+0) defn veck +
= (u, EW) add, ideatity prop R

=
/v

5. Additive inverse.

W+ (%) = (w ,au.) » [- (u.,’h‘*‘)] o
= (u, s + (-, m(50)) dein”scal. muld.
g 2 fmrew), Ear (-3w)) defn dect. ¥
03&"”7- = (0) Ji(ul."(‘“l)))
6. dcglﬁurmgdlt’i%ﬁ:%f =9
O\‘A‘ = O(M,)“iu‘)
= (e, £ (AN)) defn vect. scot.madt
- (cu“J;(C.u‘)) g is comm (%)

Which € S 7
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7. Distributivity under scalar multiplication (2 vectors and 1 scalar).

e (ird) =+ efen )t (nge)]

e () BBV, ) defrect +

2 (e(wv), C(Bur39)) defn vect scal. mudt,
< (ew vy, , C(En)re(d%)) R is dist.

« (eu,, c(30) + (&N, E(EW)) defn vect +

s C(u,30) ¥ e (Vi,EN) defn vect. 5ol ol

=u74—cv‘//

8. Distributivity under scalar multiplication (2 scalars and 1 vector).

(cva)d = (cva)(u, b4 )
2 (‘“") W, ,(c+c|)(4;u.)) defn veck scal . it

z (Cu.+du., c(m)¥ A(iu\)) R is dist.
(C‘uo )) c('&“‘))"’ (du'\)d (’tu\)) d"‘)c"\lec"" +
¢ (ul )éu') + d(ul) "7:“') J‘C‘F“‘ vect. seal. rwd

>
-

11

D >
= Cu ?dll//

. ________________________________________________________________________________________________________|
24

CREATED BY SHANNON MARTIN MYERS



5. Associativity under scalar multiplication
L(dit) = ¢ (o, tu,) ]

e (du, 4 (50) Je dafn vact 5ot malt .
(c(du), c,[d(-&.u-)])

< ((Cd)ua) (Cd)(t‘h)) ? (S AsSOC ()\)
=(ed)(n,, B*) defn vestor scal . mult.

"

= (CJ)T; Y 4

10. Scalar multiplicative identity.
1% = 1(u,,34) )
vac -
= (1(w), V(3 w)) defn scalar mudd

s(u,, O t)u.) 7 is associod e
) &« ) an\'-m“" V

=(u,%

>
= Uy

Conclusion?

2(" Ex)e )‘5&3 is a vetor sprrll)

. ________________________________________________________________________________________________________|
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Example 6: Determine whether the set /7 is a vector space with the standard operations. Justify your
answer.

W ={(x.x,,4):x, and x, e R}
U= (V24) and V=(5,0,4) € W
1V = (6,9,7) %W so W i5 hat<losed urder
addition. So.,.. NOT o Ve spach- -

SUBSPACES
In many applications of linear algebra, vector spaces occur as a S\A)SW"' of larger spaces. A

DMP%_ subset of a vector .S%U. isa sk S@(& when it is a vector
with the _S@u¥\,  operations defined in the AL &AL vector space.

Sspace
Corjslld‘er the follxlng: ngl(_i_w?.and V=R. W = %Ca)j):seks
—.ﬂ" 1 d 1 ; " »‘:‘I I . :

I o O . - s s

|
- .wy‘-quﬂf —o—o-—p-—o- -rlyvqf rva" r~v7971r-
1
4

! . [
S WeR, gubsdd

W T N U U . S, T . .-

i’ 8 15 noneeby
- 44K Lo .I' Ll

HEHE >
T B2 0,u) N =(o%), e,k e%
REEEEREAE EEEEENaEs
‘ , ] . .l: V= {0,“;)*/0/“»)
(0,uxv.) €W, 50 we ™
cfasuse wndar addihion

s C(a,“t)
= (¢(0),e(n.)
- (olcu,‘)év\)“samwg

cigsure, vrded scal. mult.
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DEFINITION OF A SUBSPACE OF A VECTOR SPACE

1
A nonempty subset  of a vector space 1 is called a ;‘4‘25 Fa;& of ¥ when LI is a vector

—— —

space under the operations of addﬁ O™\ and M mv-H':P “ L&'H'Qﬂ

defined in 1.

THEOREM 1.4: TEST FOR A SUBSPACE

If W is a nonempty subset of a vector space 1, then W is a subspace of 7 if and only if the following closure
conditions hold. > >
1. If wuand varein w,then_ U +V isin w.
2. If wisin wand Cisany scalar, then  CW isin w.
Example 7: Verify that  is a subspace of 1. é
W={(x,y,2x—3y):x andyeR} )
V=R

|)\09ij mﬁbmp{'bor
2) wWis nan-empty
et X = (u,,u;,24,-30,) 3 = (V,¥2,2%-3%) u
3D -': Vs (w4, 2 =3, ) ¥ (v, VY3 ,2V-3Va )
= (u+v,, Uy ty, )(Zu\,—Su-z)'l' CZ-"ofa"t) )
z(uiv, ,u3tVa, 24, +2v, T (-3“;-3\’:))
2Ly, TV, Ut Ve 2w tVy) ‘5(“>*V3-)> ewV/
X) &R = e (u,u,, 2u4,-3A2 ) = (Cuy i 2ccu,)-3ce)
= (cu”c,u,)d'(z“‘l'sut)) ¢ \l\,/

= (e, Cuy, e (2w)-C (3u22)

THEOREM 1.5: THE INTERSECTION OF TWO SUBSPACES IS A SUBSPACE
If V' and W are both subspaces of a vector space U , then the intersection of J and W, denoted by

V n w , is also a subspace of U .
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1.4 Basis and Dimension of R”

Learning Objectives

1. Determine if a set of vectors in R" spans R".
2. Determine if a set of vectors in R" is linearly independent
3. Determine if a set of vectors in R" is a basis for R"
4, Find standard bases for R"
5. Determine the dimension of R”
2 )
Let’s do our math stretches! v. \'f
If possible, write the vector z =(—4,-3,3) as a linear combination of the vectors in S = {(1,2,—2),(2,—1,1)}.
D S D
-
Z - C.V l+ CZ‘ (s
A
e Y = ,L) C (7’)4 \ 7
| 0\*%»
- __J
4 = 0 +1Ce y 2\ -Y i

-% =27C," C, z-) El g 090 o

% 2 -2¢, ¥Ca sl

N -
whok 5. -

Q = %(\,z,«z), (1.,4,1)‘ (—q‘.g‘s)s

DEFINITION OF LINEAR COMBINATION OF VECTORS IN A VECTOR SPACE

L
A vectorvin a vector space V' is called a hmﬂf combination of the vectors u,,u,,...,u, in V'

P | > > 2
when v can be written in the form \l = C, “‘ ‘\' Ci-uZ- “‘ oo« “' C‘uk_

where ¢;.c,...c, are scalars, (]
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DEFINITION OF A SPANNING SET OF A VECTOR SPACE

4
Let S = {vl,vz,...,vk} be a subset of a vector space V. The set S is called a m&i setof 1V
when ﬂg% vector in ¥ can be written as a J\mﬁ.r _wm of

vectorsinS .
§={(1,0,0),(0,,0),(0,0,1)}, ¥ = &’ 'ﬂ'_ “: (“')u’z zu$‘) b‘“"‘b\ﬂ-“fb‘
R TR NN WTRRTV S
“ (“ \'3 \) ] ‘5)

N > Y
LN, +CN Yo, =

e (1,2)% c.,.(°,',<’>*<s(‘3°"7=(u.,u«,,,»t;)

¢ U,
g 2u,
C, 24,
0,01,0,03 F.(20) 8, (501) = )

0§ spore R,
W —

6 V > - . ’ o
S={(1\‘2 3),(0 1’2),(—{’1’,1)}, V=R L‘i us (“:t,‘*:.,*;) 2 U,v2)236 .
eV, +OTACN, =0

¢ (’13167 ¥ C”'(a/ \/7')}('.’(' )\ D:P 9“:”3)
c\ ‘Cs =‘kl
2’7c.‘+2c,,{'63= ¥
e )

——

S iy a smmimsdf of Vj

e —
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QO ~
v‘~°
__;wl
/
\:J\

-"-E)s-
* "
> ¢

v B

I 1 I el
o1 B |-2A14s

00 -2 - b"'u}

se2 vau2 > & k= 0a)) e
2 €02 - (hzae bug) 1
O -u.-\ku,.‘\'ws ¢ -_-.-L WK, - +%u <=\
[O'\’ —D-L‘.‘\'uz. L= 2% "t“-s 3)
-2\ *m 2 Cy = 5 (ui-Tetus )9
..u —2uy ¥ U e .(-1).D):
Oz. g g - "'\u.-‘,'f%\l; c‘(\,l,3)a£O,\,%) (3( ll?'.) “
0 O -2 | Wiy V(4,23 ¥ COE,42) N 2 () ))
v (1,),0)J

¢,*"'r, =% 32 Y,
- 0,22, 2N (W 2)

V2 0 \-2(urle, U,
[a | \ 3 - AatBUs)
O O ( "/;CIA ~“lrrting)
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DEFINITION OF THE SPAN OF A SET

If S= {V19V23"’3vk} is a set of vectors in a vector space V', then the Sf)m of S is the set of all
A L oX combinations of the vectorsin §'. N
5 \ g
San(S) = %c.\l,'rc,,vz’r 40V + 0 G -, G R

The span of S is denoted b S 2 -

s S 23,
When ') S Vltlssaldthat Vlsm by\S‘ V‘O“Ll"')‘\'- r that

_~? spans_ N __

THEOREM 1.6: Span(S) IS A SUBSPACE OF V

If S= {vl,vz,...,vk} is a set of a vectors in a vector space V7, then span(S) is a subspace of V. Moreover,
— -

span(S) is the Smag&[ﬂ subspace of V' that contains S, in the sense that every other subspace

of V' that contains S must contain span(S).

Proof: )

Lk & = c\d eV *cvyg_ Q= a'\,lm,;: +.--44 uF_
= QQM(S) uhere C“a\ SO(o,t,Z‘ Le?- ond b el
s\mn(e) o ndmmf’«a, Svi’swl-o{‘, V.

"= cv #C;.V,,\"“ \‘C'LVY-

3
 Datd ity A v,_
wed = (e, )v +(c,jrd;)v y - b (YO )ve espn(s)/

ba = b(e3, Jrc.,v, areNe)
.- ))
b‘) (b(cs\) ¥ b(bz,\/z>§’ N b(ﬁ‘«. '
\or‘ CIN R (bCa W, ¥ ro - (bCV, )és‘,u,(s) /
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Example 3: Determine whether the set S spans R*>. If the set does not span R?, then give a geometric
description of the subspace that it does span.

a. §={(1-1),(2,1)} = i%. ,313

et T=(u,u;) be w‘*b\“&"of in R, u,andu, ER .

S S Y L
S g
&, (1) ¥ea (20 = (uyyue) Pan() =&
e, +1Cy =1, ~a Y 3w, ): U,
-C, ¥ Cz’__‘:\’b -c,‘g..gu\&'gu,,su,_
%C, = Utun e, =-dw v,
C2= F(uius) ¢, % ¥ (u, -2u,)

Creck: 2
Llu-2u )+ LD EN = (u,u)

/\/\/ (U.)l‘,‘_) 2 (u"u,) a‘zf:/
b. S={(152)a(—23—4),e,1j} T
U (\o’L) e ('Z,M) r 63(% J\> = (u‘)d«,,)

C\-2C, + FCs *w,y
2¢,-4¢z ¥ Cg = Us

~20, ¥heg =C 3= "M
Lc‘v"’ﬂ-z *’C}: U2,
OC'. u’:'ZU‘.'

u, ;“a

CREATED BY SHANNON MARTIN MYERS
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' SZ{(‘I’Z)’(%‘I)’(E)} 2 T (w,uy) be Maqccbr in -

= Y > AN
C|v| 1' CL\I; ‘\'CSV} =2 U

c" (‘l)z) T Cblzl") ¥Cy <l, )) s (u.,“z.)

au.-}—b(cb‘l'zcsz Z“t
2c, - v teg® V2

$¢bi‘5(.3 = b‘i*ub
0y = g (2utdar 3¢,)
/\/\N/
"C; 'chz "’ "3(&&1.‘ 1’0}-1,"30&) =WU

-C, +2¢C, +%u.,&is-u;,-oq, =y,

DEFINITION OF LINEAR DEPENDENCE AND LINEAR INDEPENDENCE

¢, = Lb’ iao + Js“"b

SQQ (\_QX/" Fab&

A set of vectors S = {vl, Vyoeuns vk} in a vector space V' is called linearly JM@MAQQL when the

vector equation

A - -
G.#.f(;vz" e +Ckv‘ = o

has only the ‘ X ‘]j.g&, solution
CZCe=""" :c.k-O

.~ aa’
If there are also _ﬂDnMQ solutions, then S is called linearly _&m‘

CREATED BY SHANNON MARTIN MYERS
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2(c.ogut Jé“»)’c,,fcss W,

)

6 -&ul*éuv"'c =Ul1,
— 2 Z <3

Co ¥ “5(&“;‘\' u,,‘&ﬁ,,) = %\A.

Cedd 19 md’i{t‘-

"Q\ ‘\'L‘—‘yir CS su‘

[\L‘\v“‘l &7.\'633 %LZQ‘\'&A»)

Z -0\ Mb 0
et ¢, =
20( Q2> L2 3-Y)
5’ ‘G‘ ‘\'261. =U,
[O ?3 Z“ﬂ'ub] Cz 2373
'(l\ -\—zc%u. “'J,'u'@) > U.‘
- C, V%“‘y%uz = (o
— C. = ‘g“l \3 %“1‘
bjﬂ"‘lrbsz O'- ‘
N—— T ’
N SVOLINCAD MONTS [:)]
a—
Llwru) (-, D) L —
1
% (200 v WXz, 0)2 (4, u,)
Mpsiroct as heck.!
é °
et u=(12)"

(-2,3) »(%74)= (12D [Sspm e’




TESTING FOR LINEAR INDEPENDENCE AND LINEAR DEPENDENCE

Let S = {vl, v2,...,vk} be a set of vectors in a vector space V' . To determine whether S'is linearly
independent of linearly dependent, use the following steps.

AN A A _=
1. From the vector equation Ca“r\'ﬂz\‘;‘\ - *de: 0 write a 4‘1\&5'\'28'\ of

linear equations in the variables ¢,c,,..., and ¢, .

2. Use Gaussian elimination to determine whether the system has a “D!QM solution.

3. If the system has only the "T‘\‘_ﬂgf solution, ¢, =0,¢, =0,...,¢, =0, then the set S'is

s b
linearly independent. If the system has M solutions, then S'is linearly dependent.

Example 4: Determine whether the set S is linearly independent or linearly dependent.

o 5={3,-6).(-12)} 3 -V |0 3 -) |2
'\>l\ V, K"b 7’Sd}$ [4 9 O]

2
e,‘?l’ + 6)31‘3 0 )
Cil3-0) rc, (+y,2) = @° ¢ =Ca
C)z(bl)vz)‘r:o / ) . 3 i .
’3‘:2‘ Q-Z.z =0 | cs(.s/"(') ¥ 5¢,(-,2) =<O/O>
_ Q =O Sis \&maﬂ% o\epa\dqnf SN
b S={(6,2,1),(—1,,3\,.2/)}-\/ 3 soltians orkal than ¢,=¢ =0,
> > \ -
Vv, Va

S s = Nate : ‘bf TI’Z\‘
CN, ¥ LN = D 5du con’ ¥ ¢ref

Li(6.2,1) FCyal1,22) = (0,0,0) *M4 ik W/

b, =C, =9 @ -4 |O [oe ?”gd“ms'

2ci 13m0 > T [T ] o L; sjod [43

C. *;(’&3 or
o o 04’0 v
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SO — 0((:?«,!)}0(’] ZY)=(do
\u?&on o Sis uwﬂj 3\4:,2,.:7

c. §={(0,0.0.1),(0,0.1,1),(0,5L1),(LLLD)}
v, v V. V.,

c‘(a,a/a, l) rc, (22, V) reg(ony, V) "Cq(’/’/'/‘)‘(‘!‘%b
¢, o

Car <, = @

Lot Csr <= O

¢, Flg ¥ j,kc =Q

I,"q=c,,= Cg” ,1-0 So S s \\mo.r\a.m&ayn@‘ﬁ

B

e —

THEOREM 1.7: A PROPERTY OF LINEARLY DEPENDENT SETS

Aset S = {V19V29"'9vk}' k > 2 ,is linearly dependent if and only if at least one of the vectors v, can be

written as a linear combination of the other vectorsin §'.

Proof:

D SV?P%C 3is |\M0{“6. dl‘xﬂm Then F scalofs (\af

all za0, 2 cv.i'c, \I ¥ *C“qkz o Let e, 20.

e 2 S
ﬂubd/we C.V. =’C&V -C 33-_,,_ CV_V‘,
] >
v > - gl\l ‘C @ oo, w <
L 3’:’\’3 ‘z"‘;'*’r- 7
-3 S )
.5 3 "V\ \'CJ‘V ')—63\/3“’"‘ QK-V& .
#he oefficiend 1o v, i -1 #9, :Sas hmula_

degerderd. v
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THEOREM 1.7: COROLLARY

Two vectors uand vin a vector space J are linearly dependent if and only if oneis a Mmtp‘
of the other.

Example 5: Show that the set is linearly dependent by finding a nontrivial linear combination of vectors in
the set whose sum is the zero vector. Then express one of the vectors in the set as a linear combination of
the other vectors in the set.

S ={(2,4),(-1,-2),(0,6)} c, (2M)4 Cz("\,‘?) ¥Cq ()18 )3 (Op)

¢, ) req (‘\,‘-7,) = (0,6)

lc. ‘Cz “0 2 -1 ] \
hc -2, @ > -2 |< ~ z-\l3
‘ .

¢ (~2) v, to) = (ZM4)

- *2Z > < =- -2(-\2)¥0(06) = (2M)

-2¢, ¥@c,=4 _/\Jv
> +X recssd = ¢ 20 ﬁc‘,\ (b, 059
-

2(1-2)%0(0 ) =(2,9
DEFINITION OF BASIS ! (z,l-l) ¥ (' ) / / )
A set of vectors S = {Vl, VZ,...,Vn} in a vector space V' is called a _bGS‘S for V when

the following conditions are true.

1. S_sm V. 2. Sislinearlyjﬂd{_%j\_m.-
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The Standard Basis for R’
§ ={(1,0,0),(0,1,0),(0,0,1)}

Example 6: Write the standard basis for the vector space.

a R S = %(\,0),(6/1)3

" (S = 25‘101@0;‘)), (o, 'JO;O:D)’COIO/‘/D’O)’
(O,D,OJOJDS

Y %(‘Iolal..,)o)l (0,1,00,+9),...,99,...8V0),

(0,0,..-90,\) S
N ye&ord
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Example 7: Determine whether S is a basis for the indicated vector space.
S ={(2,1,0),(0,~1,1)} for R’

et wz (u, ;05 be ony vecker in &7,
C. (Z/ ‘/0) 4—(,&(0;\/\) = (U.,U‘L,“s)

Z¢<,
C.- (g Wz C,=C, "“3-

=4, > ¢, =

Lu, (20,0 rug (1))

=(u‘/uz,u3)

Cy > Uy
e} s ohed Yaesystems £
LQ\' u- L\ 7/, 3) 7

i«(w 0) ¥+3(5-)\,\) - (\,2,%)
(1,5,0+(0,-3, 5) (\ 2,3)

THEOREM 1.8: UNIQUENESS OF BASIS REPRESENTATION

sinck S daso’ t span
g>.

If S={v,v,,..

way as a linear combination of vectorsin S'.

, V,,} is a basis for a vector space V', then every vector in V' can be written in one and only one

Proof:

Q) e S 15 a bosis Jor V) Dis \inearly

_)

~ CV"C’. ‘\’C,\l 1mgles

}CV 2 - < '6\'3’"“(,
5 G aed, W2 \énnuofha:l' o‘-o
e q bD‘"\\slm m

il flay

o Lacis mMeans
5 spoas Yond
Al S is lin, wd

N

» «ﬁ’f‘t’

 Sinee S
2 we Gn'Y
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P(wf Smc,e, 5 '5“b00‘0§0f\l S%QC!J\@\/O.M Ss
nr\na!\n.a_ &Qudmf

let Y=V \'c,,\l,j'
akoo\amubn\-\'m oS> U= \ofr\: Nyt .-

‘?; =c,v ’\‘C,,V,A‘ %-Qn\l,.
S
l_; ‘éo“ \—b\la\. \'l’ V)

0 =Y v,)f(f.,u,_-b,y,,)\' o (N b,\\lh)
35 ()T, ¥ CearbadNy b - (b e
Suva 19 \"“Q““g"“d‘f"“"‘m)

c,r\a‘ =0, c.,,—btzal ce o)

¢z, Lok, ..., 0" 0n
Anuo e Vosis ¢ eplesinladion 15 unque. 7

. pC v,, o/nd suﬂaav;‘d can
B A X%

‘

Co ®a=O



THEOREM 1.9: BASES AND LINEAR DEPENDENCE

If S= {VI,V A } is a basis for a vector space V', then every set containing more than _f\ _ vectorsin V'

D9y ¥,

is linearly Admm‘k—

THEOREM 1.10: NUMBER OF VECTORS IN A BASIS

If a vector space V" has one basis with _1} M, then every basis for V" has _¢) _vectors.

oot LgY S, 2 sz’)u\r\zo)"')“}ng be a oot QO(V) ond SuppdSe
3,248, 82,0 >4 050 b2 o basis Sor V.
Since 5, '% “‘\10(\‘3 '\ndo..?ar\%md and S, Spans v,
asm [hm.1 9] Oieiteriy, Since § i Vinaos
‘tV\dWJ‘\\' omd S, Spons \l} nen[Thm. 1 4L, lku\dz’

m=0. y

DEFINITION OF DIMENSION OF A VECTOR SPACE

If a vector space V" has a m‘s consisting of _ £ vectors, then the number _¥N s called the

d"!lﬂ !Sig ) of V', denoted by _d\m (V) . When V consists of the
ZREQ  vector alone, the dimension of V" is defined as o .

Example 8: Determine the dimension of the vector space.
a. R’ b. R’ ¢ R"

dim(2) =2 dim (&) =5 dim(¢" )=n
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THEOREM 1.11: BASIS TESTS IN AN n-DIMENSIONAL SPACE

Let V' be a vector space of dimension n.

DA D
1. If Q= \ \‘v---Vh a linearly independent set of vectors in V7, then S is a

\)0615 for \l .

~ = .
2. If.igrzo?)VIo)"')\’ﬂS_sw v, then S isa \MS\S for \I

Example 9: Determine whether S is a basis for the indicated vector space.

S =1{(12),(1,-1)} for R*. A}mcef) =7

B—

NAYD AL (r,7\) =ﬂ_/
¢, ¥23 = [e2c, =0 > Sis dinaafly \ndegend
2¢,-c2>2 ard S has Z VectocS and
e, = Z=din N—’)zso Sis o

C Lo bosis FOr €5,

o, —

C
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2.1 Matrix Operations

Learning Objectives

1. Determine whether two matrices are equal

Add and subtract matrices, and multiply a matrix by a scalar
Multiply two matrices

Use matrices to solve a system of equations

Partition a matrix and write a linear combination of column vectors

vk wnN

Matrices can be thought of as adjoined column vectors. They are represented in the following ways:

1 iﬂm_letter A E/
2. Representative_dm A LO\ l

3. Rectangular Q(DJ? _
\\bu bl‘b b.; R - PN
by, "m.-\’ v boa
b30 hgz 53 bZn

<
1}

° o
.
» [ °

oo b

" bm. b"ﬂ mn,

DEFINITION OF EQUALITY OF MATRICES

L)

Two matrices 4 = [aij] and B = [by] are @ q,“a ‘ when they have the same .Sltg’

- &y
XN and an bo.) for ""ém -J‘ﬁn
Example 1: Are matrices A and B equal? Please explain.
1
-1
A=[1 -1 3 §] B=
B.Y $x\

NO - nof tha sMnesize |
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/0 Y3
Example 2: Find x and y. ’LX" = ‘5 ( 3?)=(‘é)
{2;;—1 4}{_5 ‘1‘] ﬁ
I |

8

A matrix that has only one Co\u.Mn is called a Cb\ uwnn M(’\X or
pea) (V1) Yo \Ie,g\'or . A matrix that has only one __ (22 is called a

oon _Vh(gt[‘_L or_fOVo ggl\_-Q" . As we learned
f
earlier, boldface lowercase letters often designate fé\h) m_ and

oluna  madtie
- o, > 2
he \au A28, |

G, %y

- QA3 A'.
a, = a
% 1 Qg U2z

DEFINITION OF MATRIX ADDITION

If A= [a,-j} and B= [b,j] are matrices of size mxn, then their _SJL is the m xn matrix given by
A+8 =[5 tbij]

The sum of two matrices of different sizes is M&ﬂi&/—

DEFINITION OF SCALAR MULTIPLICATION

If A= [a,.j] isan mxn matrix and cis a scalar, then the 5('(LQQZ AMMﬂ_P_l.bi of A by

cisthe _MNMX N matrix given by
cA: [‘3“'(;1
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Note: You can use — A to represent the scalar product‘ -\ )A .If Aand B are of the same size, then

A— B represents the sum of A and ‘6

Example 3: Find the following for the matrices

1 -3 6 5 2 7
A={2 0 2 |land B=|-1 9 -4
-2 8 -1 -3 0 1

a. A+B
e -V 5
= l qQ _.L
5 3 O

DEFINITION OF MATRIX MULTIPLICATION

If A:[aij} isan mxn matrix and B=[bl.j] isan nx p matrix, then the_?mu_(i AB isan mx p
matrix.
AL =G =l

n

c. NG b

= La‘mbt‘s = Gg.bns "“ul’zj* ¥ Hia ™
A

where

C',.‘}
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1)

To find an entry in the ith row and the jth column of the product 4B, multiply the a ﬂh !QS in the

L H\I row of A4 by the corresponding entries in the 3 Hg column of Band then Sum_
the results.

A Hees B
%2 A4

N li (5) dB:{—lz 7 5 —1}
= o -13 1 2 11 (Lﬁ%sk'i'ss.‘u;.) 3*.,\

" S\-\
) N\

5 (A1) & 6 (~7) 1SIFOW) V95N o)
W) ¥ B(a3) HESE) 4GSR AGHS5 ()

)
_

Example 4: Find the product 4B, where

15O (W) ]

. ________________________________________________________________________________________________________|
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Example 5: Consider the matrices A and B.

A:{_ }andB:{_4 4}
232 11 13 2% 2~ 6 13

a. Find A+B b. Find B+ 4
I FCH) B4 -9 1 -A¢(-1) YD
A+D = : ] ‘ s ) TP A
Vv BFD |7 2 pell (¥
c. Find 4B e b D) CDUY 1B

"

d

-y o2 |
[“ 2 uf’ % J(”)(«q)r(.s)(a) (M) ¥ (3)63)

d. Find B4 s L4 ¥ () (-4) (3D ¥d) (3 |
NYRETRN I BY .
[ 6 |9 “u |61

Is matrix addition commutativ‘e?
i‘\’ MD )UIZA/ 1r i e
Is matrix multiplication commutative?

CREATED BY SHANNON MARTIN MYERS
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A A
s Aas 2L b Y _ | . Ay Ry
LY VS 5 AR T o [ R S la *

a, 4 a3 X |
ay @y ay ||l X, |=|b, @ 3l
dy A3 Ay || X b,

343 2%\
SYSTEMS OF LINEAR EQUATIONS

1Y)

can be written as

all a12 a13 xl bl S
_ . >

ay Ay Ay || X, |=|b orequivalently, Ay = b

ay 4y 4y || X% b,

Example 6: Write the system of equations in the form Ax =b and solve this matrix equation for x.
2x,+3x,= 5 2 3 > _{x‘ ] L;[g
X, +4x, =10 A= | 4 X =Xl 10
3 41 - ;
51> (23][3] [_\ol v
X\ ) 4
9 = '0

Xz

% 5}
L % |5 r [0 'l$
[, Y }w —'bﬁzz'e'\”v"

s 5] )
S5k
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PARTITIONED MATRICES

Ay op X, b,
a a e a
21 2 21 X, b
A= . : ) . X=| . b=| ?
a a a X b
_fml “nZ .Lmn _ L""n | L—m _|
. 0, PN

LINEAR COMBINATIONS (MATRICES)

The matrix product A4x is a linear combination of the CO]an vectors a ,a,,a,,...,a, that form the

(',QQ‘Fﬁ Cled’ matrix A . rﬂ “ ’ Rin l
'au 1= + X |aza
a t-- e
Ax = %, | |+ X ;W "l
ﬂ.a;mn ,0"""3 > Ln J

S > > . ¥ Xq%na
AR = XA, ¢ %Xy ¥ o-c T Xn _
The system Ax = b is consistent if and only if b can be expressed as such a }IMM

(,an‘\b‘maa\’ib”\/ ,where the @d i ) ggi@"ls of the linear combination are a

Sol wh et of the system.

Example 7: Write the column matrix b as a linear combination of the columns of 4

-1 3 _ - b5
R N -[Xz LM e |

S |
S - -X;*’axv] SL 31
ij\ F X 0, = b [Naxs"'xz -
% -1
- = %, = =71
fx,, ‘l { 5] -—X\f 2
x‘['b] /"6/_1 ,bx.',xb=63

e 7.7 1
4‘.:@]"(")[‘]‘ 6% X248
— —
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Example 8: Find the products 4B and BA for the diagonal matrices.

3.0 0 -7 0 0
A{OSO] B=|0 0]
0O 0 5 0O 0 12
(400 |\-1 00
A&s 0,50 ok O
00502

4 (-1) +0(0)F 0(@) 3(0)

(s

l

2|1
-110
311

30
A EIUSTR
A= P ] , 87 Z‘;.
A A
pb = Aueu L Au.g"" /X
Au&“ + A,‘Lﬁu
&
-1\ 0
(|

)

].

row) ¥0(2) 3)+0(cd +0(2)

o1t ‘,5)(°) ¥(O)b) ©@s)+ (5) )+ )S) o@)+(5 3)(0) t 0CiZD

(-1 +9(0)¥5(0) (o))t o) + (5)0)

o) +LO o) 50z

|

2yo 9

o 209
9 O O

-
-

\_—
’;‘T:S‘%\ 1 A o lbl
S~ r~—

A“=L3) 'A,L"}'z[‘q
%T:L% O] ?L":LZ ‘]

[ﬁl[” ol =5 Z]
SREET

[3](z2] ‘(Lq o]
([ujﬁz =Lz}
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2.2: Properties of Matrix Operations

Learning Objectives

1. Use the properties of matrix addition, scalar multiplication, and zero matrices
2 Use the properties of matrix multiplication and the identity matrix

3. Find the transpose of a matrix

4 Use Stochastic matrices for applications

THEOREM 2.1: PROPERTIES OF MATRIX ADDITION AND SCALAR MULTIPLICATION

If 4, C are mx n_matrj ces and c aﬂd d are scalars, then the following properties are true
b 2l B Lo T TLaTs BTy i ey e, 2 e, e R
1. A+B= ’B “’A Commutative property of addition ] a*( 2 )
Proof - . o dzér"’“ W+
LG.\\]-I'LbN] r? - Ll’ﬁ]"[’ N
=[a--+b;ﬂ defn matix () =ethAy
= by, roy ] €15 emm 4
2. A+(B+C)= (PH'B) "’ Associative property of addition
3. (cd )d=_C (JA ) Associative property of multiplication

5. (A + B) = LA ¥ 6 Distributive property

f» [cldap)] % R is assac (%D

mad T4 — *
(cd)%] def0 s muldt = 5 ¢ [da;&] Jefn 508 el
- carar /
4, 14= Multiplicative Identity - e (d La‘dl)

)= e[+ Ig))
= ¢ [ £biy ] dogn moiex 4
< [elo rbig)] dein drissh MY e [oij )k cfoig)

= ic'a,,\-“.\' c_b;:)] s d\g‘\f\hl}hde—

\

o

pg

-+

(5

w
AN

6. (c + d) A= QA v A A Distributive property
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Example 1: For the matrices below, c=-2 ,and d =35,

-3 5 11 -7 1
6 9 11 2
-\0 Ca
a. c(A+C) i | | ]

. ________________________________________________________________________________________________________|
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THEOREM 2.2: PROPERTIES OF ZERO MATRICES

If Aisan mxn matrix, and cis a scalar, then the following properties are true.

1. A+0, = A additive ‘ad.aﬁ\’i""a,
2. A+(—A)=L add 1 hve inverss

3. ifcd=0,then £ =Q OF A= Omn
ma

Example 2: Solve for X in the equation, given
-2 -1

A= 1 0

3 4

[0 -

Fly o
2 2

0 3
and B=| 2 0
-4 -1
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L (2 +3)

‘Y My 2
= Lx "’ *3 “‘ L Cw y ¥
THEOREM 2.3: PROPERTIES OF MATRIX MULTIPLICATION 3’ ww‘;ﬂf‘

If 4, B,and C are matrices (with sizes such that the given matrix products are defined), and cis a scalar,
then the following properties are true.

1. A(BC)= (Aﬁ')Qj Associative property of multiplication

2. A(B + C) = Ab "’ Aﬁ Distributive property of multiplication

3. (4+B)C= AC + 6 CJ Distributive property of multiplication

4. c(AB)=(cA)B= A(&B)

Example 3: Show that AC = BC, even though 4# B.

1 2 3 4 -6 3 0 0 O
A= 5 4 B=|5 4 4 c=/0 0 O
Lz] - sz
‘$ 000 l‘b"% :’?lW
- o O L -8 W o
AL = o 54 d’ y -2 | | AC‘E
3 -2 | -2 -
1L 3]
_ g 00
o - IR B
| o | ‘4’&‘ _q’b ~

. ________________________________________________________________________________________________________|
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Example 4: Show that 4B =0, even though 4 #0and B=#0.
2 4

A=
;o

2 w[*
Pl 24 ]2 !

OD‘ ]
5% W W

THEOREM 2.4: PROPERTIES OF THE IDENTITY MATRIX

If Aisan mxn matrix, then the following properties are true.

1. a1, =_A 2. A= _A
[ &)
| o 7 \ 9
I :lo 1,99
2 | 3 o |\
_ | O
10---Q7]

T =(9)y9: 9
n O‘O

THEOREM 2.5: NUMBER OF SOLUTIONS OF A LINEAR SYSTEM

For a system of linear equations, precisely one of the following is true.

1. The system has exactly Q[Lb solution.

2. The system has inf&nﬂ’dg many solutions.

3. Thesystem has _NO solution.
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Ta Ocdte: A’ ond tad®)

THE TRANSPOSE OF A MATRIX T
The transpose of a matrix is denoted l ) and is formed by writing its c{a\u.mné as _Egl

Example 5: Find the transpose of the matrix.

-l b2 A
‘r
a. A= 9] A > l_l qQ O
332 410 2A3
o -1 1 I+ A=A
= > .
6 7 1 Al 2 )1 9 2 A s Symmatric
b. A=|-7 0 23 s 25 -3 D
323 [19 23 -32 % 19

THEOREM 2.6: PROPERTIES OF TRANSPOSES

If 4 and B are matrices (with sizes such that the given matrix operations are defined), and cis a scalar, then

the following properties are true. Lg;\’ A O‘so ) 6 L “3 =) O'“) b 6&

1. (AT )T = A Transpose of a transpose
Proofr 1’ < Lai&]

T
2. (A+B)T = Af r 6 Transpose of a sum
Proof:

[A+B) (LO‘IJJ"'L"u)-)
[a‘d"bu]f defp o madtin(+)
= l'b“] — = [od+LEi] - AT+BT,

T
3. (CA L A Transpose of a scalar multiple
i 717
4. (4B) =_6A Transpose of a product
CREATED BY SHANNON MARTIN MYERS T AT 'S d (,'F‘ﬁqo( 54
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Example 6: Find a) 4" 4andb) AA". Show that each of these products is symmetric.

(4 -3 2 0]

2 0 11 -l e
A=-1 22 0 3 = “Raid

14 2 12 -9

6 8 -5 4|

Bz}
EEEEEE@BEEEE

65150 c5] B3] 6 [ e}

5 4
5& ‘6; ?g . wa1l.

Example 7: A square matrix is called skew-symmetric when 4" = —A4. Prove that if A and B are skew-
symmetric matrices, then 4+ B is skew-symmetric.
EV\\ P\Qﬂ

T T
= AT+9
(Ave) (Av8)' = -(me)

= -A ‘\’('Q) [A”";dkfwogbwngl

:-\(ﬁ’\"€7)
= ‘(A‘\'67 V4
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STOCHASTIC MATRICES
Many types of applications involve a finite set ofm z sl ) 37, 2°°°) St\g ofa

given population. The Ml%_that a member of a population will change from the

’ih state to the bH’\v state is represented by a number ?i l , Where

O £ fi;;,- \ . A probability of o means that the member is certain na‘_t to

change from the jth state to the ith state whereas a probability of \ means that the member is

_Cgctmf_\'\_ to change from the jth state to the ith state.

R, F, R,
p_| B P o B,
Pnl Pn2 Pnn

. r N
Pis called the _MAXTI%. of ﬂtﬂ%l_h@probabilities. At each transition, each member in a given

state must either stay in that state or change to another state. Therefore, the sum of the entries in any

_LQ_[mQ_ is ‘ . This type of matrix is called w An_n Ry matrixPisa

stochastic matrix when each entry is a number between _ () and \ inclusive.

Example 8: Determine whether the matrix is stochastic.

1 045

1

301

5 12 .
A{o.ss 0.2} L1 e);s Ww”o\%(\'ﬂ
10.65 0.75 12 10 3 n!’*

3 7 ;\"’C

10 12

v )

et
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Example 9: A medical researcher is studying the spread of a virus in a population aboratory
mice. During any week, there is an 80% probability that an infected mouse will overcome the virus, and

during the same week, there is a 10% probability that a noninfected"Will become infected. W
mice are currently infected with the virus. How many will be infected (a) next week and (b) in two
weeks? i NI
0 P - \0O0 | T
n oo X =
v 2L

_|o2 o.tl
P 0.9 0A
52 0.4 (120 \\O] T X
NTX, =lp.p 04 \qoo " 1840 | NL
, T
m\f@z& o m'xco.»s\\\bem%m\'ﬂ
_ % 5o _ |
b)?ﬁ’)(a]= X, o
(0.2 0.\ HD‘\
03 04 (840
_/// —
1) Tn 7 o=eks, L\ micz will ea
&%Ql infecked. o
X,

o

1)

)§
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octave:2> P =[0.2 0.1; 0.8 0.9]
P=

0.20000 0.10000
0.80000 0.90000

octave:3> X0 = [100; 900]
X0 =

100
900

octave:4> P*X0
ans =

110
890

octave:5> PA2*X0
ans =

111.00
889.00

octave:6> PA10*X0
ans =

111.11
888.8



Example 10: It has been claimed that the best predictor of today’s weather is yesterday’s weather.
Suppose that in San Diego, if it rained yesterday, then there is a 20% chance of rain today, and if it did not
rain yesterday, then there is a 90% chance of no rain today.

a. F&d theNtEnsition matrix describing the rain probabilities.

_\2 A A
5 4 |NK Xo: 0 |N&

b. Ifitrained Sunday, what is the chance of rain on Tuesday?

22N\ "7'K On Tuaptasy, Thalt's
$4a1)]o .33 & b chance of yain

c. Ifitdid not rain on Wednesday, what is the chance of rain on Saturday?

3 _
O'fL O!\/X 0 - OIl\
030 ( 0.9 | |har's an
»

pro.l{for ) _[a3
0401 || ] |91
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2.3: The Inverse of a Matrix

Learning Objectives
1. Find the inverse of a matrix (if it exists)
Use properties of inverse matrices
Use an inverse matrix to solve a system of linear equations
Encode and decode messages
Elementary Matrices
LU-Factorization

D npwN

DEFINITION OF THE INVERSE OF A MATRIX

An nxn matrix A4is _\ﬂmm_ when there exists an nxn matrix
B such that

A% = bA=
where I, is the '.A‘U\*\*\% matrix of order n. The matrix B is called the ( MM“"\ (‘)\r\(ﬁ*‘\\l{f )

m\pfée_) of A.A matrix that does not have an inverse is called noninvertible or _§ "\ Ma.(‘

’
*Nonsquare matrices do not have ln\lm

Example 1: For the matrices below, show that B is the inverse of 4.

_ 21
A{l 1}3

A = }/ bh= XO\X/

THEOREM 2.7: UNIQUENESS OF AN INVERSE

If Ais an invertible matrix, then its inverse is unique. The inverse of és is denoted l \ Y

Proof: S’\na, A \|S .IfNQ[.‘Hb"Q we k'm 3 ov 6 2 Ab = I -‘-BA SU.W&
Jo > AC =L =Ch.
cag=r [r IO
(eAdXB=C =G
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FINDING THE INVERSE OF A MATRIX BY GAUSS-JORDAN ELIMINATION

Let A be a square matrix of ordern.
1. Writethe 1y A 2’& matrix that consists of the given matrix A4 on the left and the nxn

Ml%i matrix In on the right to obtain LA 1‘\1 This process is called
ﬁéﬂ% matrix / to matrix 4.

2. If possible, row reduce P\ to ‘Ln using elementary row operations on the entire matrix

-\
[ﬁ 10"1 The result will be the matrix L‘/Ln A 1If this is not possible, then A is

noninvertible (or h[ﬁm&@ ).

-\ -\ -
3. Check your work by multiplying to see that AP\ = A A - Tr\

Example 2: Find the inverse of the matrix (if it exists), by solving the matrix equation AX =1.

A:[ls2 _32} AX =L F Al inatible AAX= f\l

\7, £ \ O 1 2
LA i?—‘l \0 \ /X ? \ O 4 249
-5\ ¥\ o -39 -9 I'e

PP SR L@

\ ,aa\fs 7 \

O y ]
B0 ra->e o\ e

v =2 M
1% O \9 v c 1137 3 )
-24 -5 L

B =[z. A
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Example 3: Find the inverse of the matrix (if it exists).

1 2
a. A=
I

10 5 -7
b. A—|:—5 1 4]
3 2 =2

w 5 =1 |

d
9

- |l 4 |0}
[‘A\lisl 3 2 -2 S
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o 5 =1 ) 6%
O 1 | \ ¢
O O 2 |- 1010
Lz 2 RY
2 {' O J
o s -1 |)°
o1 Vv |) O
00 | 1 -5 5%]
ayryel
v S
10 & ~71 i 9
o 1 9| 1 —32;(
10 O O \-120 o 21
ﬁ\%—‘lﬂf"ﬁ\ °0 o\ "50]
W 9 o |40 35 YS 22 ) |-13 -5 35
00 1 |13 -9 33 "
L eV {1 »polle « 21
1“’1 o9 -3
P S 0)-% -85 245 X «)3—535
O | O Z [ ;55 \V \L
OO0 | |7V -5 LI ]
ezt 21>¢) j 3
-0 -4 7;1
L/ '/J_Z I =S
A= |3 S 25
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THEOREM 2.8: PROPERTIES OF INVERSE MATRICES

If Ais an invertible matrix, k is a positive integer, and cis a nonzero scalar, then A.‘l, A ,.cA, and A" are

invertible and the following are true. gp.‘;: ‘LA '

Lo(a) A I )
Prgf\):;ce, A\S'\NQ(\:\HQ_) W know 3 % 35 AB=EA :f., D B=A
and 6}\2/\"/\:1. So A]Sﬂ‘\Q\WSQ,O&A -/

- -1 -\
, (#y 2 NAA A 2 A )
L twao

s (cay' 2N /
GRERD = (¢ £)(AX") = 1T, = T,
(ER)AY = (¢ A A= \ In= 2o

N

o (4 A )’

THEOREM 2.9: THE INVERSE OF A PRODUCT

If Aand B are invertible matrices of order#n, then 4B is invertible and (AB)" =Blg".
Proof:

(e (B A) = ACBBTIN' (87K NAR)= BB
= AT AN Al

= AA = 8"6
=Ee - I,/
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Example 4: Use the inverse matrices below for the following problems.

21 5 2
o 77 g1l 11
32 31
7 7 TR
. (a5) =g AT
rg/u (" J
) - %A z/‘l

-‘4/-;7 Wak!
Y1 Y1

"

1)

. (04" = L A J[-2ma V4o
. i 3 /4
%[_7'/1 /7] /4A q

THEOREM 2.10: CANCELLATION PROPERTIES

If C is an invertible matrix, then the following properties hold true.

1. If AC=BC then4A=8. Right cancellation property
Proof: .. .
ACC =80, [Lis ivertible]
A I = 6 L
=06
2. If CA=CB then4A=18B. Left cancellation property
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THEOREM 2.11: SYSTEMS OF EQUATIONS WITH UNIQUE SOLUTIONS

If A is an invertible matrix, then the system of linear equations Ax =b has a unique solution given by
x=A"b.

Proof:

KAR =AY

IR = N b
2K

A s unique (Thm 1] . Suffosca z >

"é

AR = e
Ax 1°

LA is e hbe )

>
=AN'c. So,

-
3 A -\ ° \ ~
AX ' D2 a2 ¢« x=A¥ lsa-mq_uaghh‘)“b
S b C = .L . eo -

Wwice A x = > AR = y
CRYPTOGRAPHY /
A_C Mam is @ message written according to a secret code. Suppose we assign a number to
each le in thé alphabet.

0 _ 14 N Example 5: Write the uncoded row matrices of size 1 x 3 for the message

1 A 15 0 TARGET IS HOME.

-

2 |[B |16 |P - [LD v 18]

3 C 17 Q

4 |p |18 |R KN L 2.0

5 |E |19 |sS Fa 15 1

6 F (20 |T >

7 |G |21 |U c, LO q \9q ]

8 H 22 \" ]

>

9 |1 |23 |w 2 1S

10 J 24 X r“\ Lo

11 |K |25 |Y 2 0o ]

12 (L |26 |z r L‘s 5

13 M
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Example 6: Use the following invertible matrix to encode the message TARGET IS HOME.

P I i]
o 1 -1 -4
-2 -z 7
A=l sl 3 |- s 1124 =4,
|- 4

>
tA-e- -l sds
2= (oo )= ds

BN
?WA: (7 -7 ﬁ(o]’ ol y

A8 s

—

7 27 =51 -9 21-#A
)Example 7: szwould you decode a message? /7 q P - \O ,\“q 7

(i = diA' to dwode ~~—

}< ‘/7,,3/0\,5'

\’_\/

bV«
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DEFINITION OF AN ELEMENTARY MATRIX

An nxn matrix is called an _an% matrix when it can be obtained from the

. (4
\M)L’L{A)_ matrix Ln by a single elementary (&\W  operation.

Example 8: Identify the matrices that are elementary below.

1 0 0 1 3
A=[(2) _21} B=|0 1 0 C=| 0 1
>0 2 1 -1 -3

e <262 Jvom I, ot sqym(

m&wi‘z

THEOREM 2.12: REPRESENTING ELEMENTARY ROW OPERATIONS

Let £ be the Jj&_@]\_k%ﬁ matrix obtained by performing an elementary row operation on Em .

If that same elementary row operation is performed on an _Y» A matrix A4, then the resulting

matrix is given by the product E A .

Example 9: Given 4 and C below ’9 Ze; v \’7_(3%\"3) rle :4
b 1}
12 0 4 -3 e tZe, -2 =
A=l0 1 2 c-lo 1 2 Ll’ \ 2l 2 ‘—l
-1 2 0 12 0 -'%‘Q“ = &
find an elementary matrix £ such that E4 =C. 5“ =\
EA = C o U -3 ey 5(33)°0
(e, Yty |[V '2 =10 | T €\
o) 9 o! 12 0 .
o T 9 ! ) Olm

00 ) . =[50 0
eu ~Ql3‘o " ' dc)\

2e, +erley
- 56:‘5; -PL::;, | =-37 en" —\i(gea“"3>
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[y o@°
Is‘osc)‘x
9 9\

Example 10: Find a sequence of elementary matrices that can be used to write the matrix in row-echelon
form.

Equivalent matrix to A4 Elementary Row Op, Elementary Matrix
[0 3 -3 6

A=|1 -1 2 =2
o 0 2 2

4 o \ OO
r‘ -\ Z, OL e = ) a
03-3 L ’R\‘*‘"(lz ‘ o O\
40 Z VL
R ) o O
) -y % yez E,*|2%°
o 1 -4 1,1 * * oo
oo 2 7
v \ O O ]

) -t 2 - c = |loyv ©
o \ -i Zl L3 c, oo e
oo ) \
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DEFINITION OF ROW EQUIVALENCE

Let 4and B be mxn matrices. Matrix B is ‘M‘M‘EAKVOQM to 4 when there exists a finite

g
number ofM matrices, 2\ ,f’/z,, ) E [ such that

% = Er_e‘_‘.‘ey_q‘“ ’ Q@EKA

THEOREM 2.13: ELEMENTARY MATRICES ARE INVERTIBLE

If Eisan elementary matrix, then £~ exists and is an Q‘an‘\'azrk&‘ matrix.
A4

Example 11: Find the inverse of the elementary matrix.

1 0 0 s
0 e 10 9% €, on T; e wmpul:

0 -3 1 -2+ 225, So o wndd &\-) u.)acorﬁ?d'e/
Y23 €3,

Ja gpresa”
fig siqn Changes o0 Yhe
20 g,(om +ha row ‘\"‘\d'.'o“e’n ‘¥
Chaitae and all tndvies in thecharyde
acee e fplied by the Ce<ipro™™
THEOREM 2.14: EQUIVALENT CONDITIONS 01& ""\K, W M Okw%ed e E R

If Ais an nxn matrix, then the following statements are equivalent.
1. Ais lﬂjg:(k i h\gg .
Y
2. Ax=Db hasa_ AN} Q!& solution for every _\ K ‘ column matrix_© .

-~

3. Ax=0has only the LYio solution.

4. Ais rau;-aagiva\ﬁto In .

5. A can be written as the product ofﬂm matrices.
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\)"{ R ad

N4
THE LU-FACTORIZATION ) )
23x3 Lo & madax XD ugp O XX
o, 0 O A, O i3
o‘b‘azto O A Qs
Q3 A Oy O O i3

DEFINITION OF LU-FACTORIZATION

If the nxn matrix 4 can be written as the product of a lower triangular matrix L and an upper triangular
matrix U , then A= LU is an LU-factorization of 4.

Example 12: Solve the linear system Ax=b by
1. Finding an LU-factorization of the coefficient matrix 4.

P A

2. Solving the lower triangular system Ly =b.

3. Solving the upper triangular system Ux=y.

2x1 = 4 $J\I \ '\
=2x,+ x,—X, =—4
6x, +2x, + x; =15 .
\) —x, =-1 ow oes E\zrnm'\\'a-lj Madi CeS
2 O O O
-l O
A=z
o1\ 0
00 o-)
\Z 0 0 ) g
9
E 9 o O

o
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) /bu. ‘3

&,
Ty = aw *
3 So%3 3 Y
ToRgsg
m 2 Gim
o /m.nJ @ ,,m.
S S 3
) = 3 =

S

1 V)
R Q0

- -9 m.wa.o
»ch.udlﬂ @500:.-.“
9 Q0 0000
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(g~
Mf“*‘ —> \is R -3—(,‘) 2 3;{"4\ «7‘:5
is K (X \
INK inpd pukpwl is 3
Learning Objectives wdorﬂ"‘“n

1. Find the preimage and image of a function i H \‘ > 1N
2. Determine if a function is a linear transformationWrite and use a stochastic matrix

2.5: Linear Transformations

IMAGES AND PREIMAGES OF FUNCTIONS \, \'\‘
onto a vector space This is

In this section we will learn about functions that __ Yl a,:P a vector space
denoted by I ‘ \";L\‘ The standard function terminology is used for such functions. Sl is called the

_Mn of ( ,and ‘ﬂ is called thecmn_of ’r Af visin V' ,and w in I such that
/r[ \/) N, 3[ is called the_m}%_of \A under T . The set of all images of vectorsin V' is
called the _ Y @QUN % of I , and the set of all v in V' such that T(V_)’w is called the

_Jomain o T

Example 1: Use the function to find (a) the image of vand (b) the preimage of w.

T(vl,vi),,, (2v vl,vl,Vz) V= (0 6),w=(3,1,2) . |
b)TrCO b) (za.) oob) (\z.a/(a) (9 the imasge o

5(\1,0/9) wider T .

L) T4 ) = (3),2) = v =() (2D 15 the preimages
of B wndex T,

Z.‘l,,‘v\ =5
v, = )
v, =%
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DEFINITION OF A LINEAR TRANSFORMATION

Let V' and W be vector spaces. The function 7' : V' — W s called a linear transformation of \' into

N when the following two properties are true for all wand v in V' and any scalar c.
S
L A (BAY) = TR + T
2. /I(Ga) = ¢T(x)

. . . I -
A linear transformation is m_?w_\%‘,_ because the same result occurs whether

you perform the operations of addition and scalar multiplication b“g’O(b or 4:?‘\’4«(

applying the le( "’(MM Although the same symbols denote the vector

operations in both I and W, you should note that the operations may be different.

Example 2: Determine whether the function is a linear transformation.
T:R’ >R, T(x,y,z) :(x+1,y+1,z+1)

W= (\.Li‘b),?‘ z(452)
"

(i) = T@IRTE)
T(5721) % (254 F (5,
2 (1,01

a.

(@)gl\D)
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b. T:M,, >R, T(A)=a+b+c+d

Lk A{Z ﬂ ) E'-E ﬂ Lo osoler

'ﬂme)=T([:;:ﬂ>=(aw) r(bi¥) ¥ (cxgd ¥ (4 *”'))
-

gs (arbrc to\v"("’*{ \'3 kh)
= T(A) H’(B) /

J o be
fzmystp -
- Karwi’LC -\’K’d
= LC“ybcha}
.y TUK). S
adion
fr‘s a_,lll\nar h’an6¥0(
4>/
E&am \m\:j
Aoes \'N'oma\x
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THEOREM 2.15: PROPERTIES OF LINEAR TRANSFORMATIONS

Let 7" bea Iinear‘gamsformation from V into W, where uand varein V. Then the following properties are

M 0= 0
, TN = =T(V)
, T (&= ) =T0)-T(V) P = @+ (1)

= T[E)Jr T(—?) 4
:T(“)‘I’T[’)(\T)J —

AN N N S
4. 1f_ N = CNy ¥ CaV2 ¥--"FCavn

then Mﬁa}lﬂw_frg“q") - C»WV.)-rCZT(:\Z_ )£ - 4

—

73

Example 3: Let 7: R’ — R® be a linear transformation such that 7(1,0,0) =(2,4,-1),

T(O’I’O) :(1:3,—2), and 7(0,0,1)=(0,-2,2). Find the indicated image.
7(2,-1,0) (2,-),2) = 2(1,0,0) - (o)n) + 0(221)

’([_(7’.'\,0)] 2 ; (‘1°/°7] - \TL(O,\,O)} ¥ OT“(D/D/‘)]
=2 (z/qz") ‘( ‘) 31'L) {'O(D,-Z, Z)
= (4,9,7) 'aéj‘z)
=(%,5,0)
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THEOREM 2.16: THE LINEAR TRANSFORMATION GIVEN BY A MATRIX
Let A be an m xn matrix. The function 7" defined by
D >
T = AV
is a linear transformation from R” into R™ . In order to conform to matrix multiplication with an m x n

matrix, 7 X 1 matrices represent the vectors in R" and m x1 matrices represent the vectorsin R™ .

W g, .oa, |y av,+ ... +a,v,
Av=| : . D= : ' :
mxn
aml amn vn amlvl + +amnvn

Example 4: Define the linear transformation 7' : R" — R"by T'(v) = Av.Find the dimensions of R" and

R". 1A
n %

1 2 e\:@
a. A=|-2 4] Kma K‘.‘)
2 2
T AT > \/"
13 -10
b, A=|0 1 -2 1
o 2 1 -4 1
T 5

Example 5: Consider the linear transformation from Example 4, part a.

a. Find T(2,4) .
A g
v ,.“"”? T(zp) = (02,4)
T2k

A(LH)

_A\

Gf

S
I

)
‘\Q-
I
se




% Tls) : (\" *ﬂvl— )‘LV‘ *q"z)‘zv"uz-)

b. Find the preimage of (—1,2,2)

T(\’/)‘ AV = @ , .
AR AR PRE

-1»« |l — 4| |

11 |21 2 00|02

c. Explain why the vector 1 1, 1 has no preimage under this transformation.

eI

\(\=\
, =0
,.,| ?ﬁ
ﬁ"é\/lj\) ¢ of Yhe Codarmoin, buf net the
(a/r%eo%‘r.
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PART 2: DETERMINANTS, GENERAL VECTOR
SPACES, AND MATRIX REPRESENTATIONS OF
LINEAR TRANSFORMATIONS

3.1: THE DETERMINANT OF A MATRIX

Learning Objectives
1. Find the determinant of a 2 x 2 matrix
Find the minors and cofactors of a matrix
Use expansion by cofactors to find the determinant of a matrix
Find the determinant of a triangular matrix
Use elementary row operations to evaluate a determinant
Use elementary column operations to evaluate a determinant
Recognize conditions that yield zero determinants

Every SQVW matrix can be associated with a real number called its Amgm_‘ngli
Historically, the use of determinants arose from the recognition of special Paﬂ@(‘ﬂb that occurin

the gg‘wﬂgns of systems of linear equations.

DEFINITION OF THE DETERMINANT OF A 2 x 2 MATRIX

NouswnN

The d@;\hg m’l] 1gg§ of the matrix

is given by det(A4) = 00 0~ auo'g

**Note: In this text, dd ( A ) l ‘ are used interchangeably to represent the determinant
of a matrix. In this context, the vertical bars are used to represent the Aa;ke,g ﬂ\\]ﬂé of a matrix as

opposed to the wa\uj—ﬂ) value.

Example 1:
a. Find det(4)anddet(B).

{11 7} Bz[fé 1_3}
der (R) = (1)G) (W) det (B)= (2)10) - CLX-3)
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eck this out... J 0“ . (/\&é““"b
o ] o " oﬂ:’?‘w o

det(A4)| —a,, a,

b. Find 4 'and B™'

-1 4
A=
{11 7}

DEFINITION OFMINOKRS AND COFACTORS OF A MATRIX

If 4isa sq!w[?_r matrix, then the _MLM\’ M .“.; of the element Qq is the determinant
of the matrix obtained by deleting the 'lf“\,row and the ;‘mcolumn of 4.The Jg‘g’gg;\-br

1+)
Q& is given by C; ( \) M

Example 2: Find the minor and cofactor of g,.and ;.

A 23 -G
“f‘T e > = 4t 0,0 313
a. A—|:a21 ay, azz] Mn' d \»a$‘ 0‘6’5\ e
5 a§, d
%

a 33 ‘*‘

Iz-c’)
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DEFINITION OF THE DETERMINANT OF A SQUARE MATRIX

If Aisa ,Squ(@ matrix of order n > 2, then the M of A isthe _gm of the
entries in the first row of 4 multiplied by their respective ‘ Q&Q(kg(g . That is,

det(A)=|4|= Zal __0yCy ¥ amc‘\y F--- ¥ O“Ir\("m

Example 3: Confirm that, for 2x2 matrices, this definition yields |A| =a,,a,, —a,a,, .
A u“ al’lc
- Ay | 993
det (A) = o‘“@ *0’ c’ w2
= 0, ﬂ O, ¥ O (.‘\) ) PN

30“ 1 a;\ " /

Example 4: Find |B|

2 -1 4
B=0 1 3
3 21

dek () 2 0, Lut el 2istu

"“we A3 e
220"t | ¥ D60 ML ‘]*““’ "‘*[e.z]
22 (N -1 ENEA) Fr3)
= W -1-

£l
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THEOREM 3.1: EXPANSION BY COFACTORS

If Abea square matrix of order 72 . Then the determinant of A is given by

det |A| Z%C = 0«“0 i L O.HQH Fo--% 0~‘m§¢'m (ith row expansion)
det(A |A| Z%C = @.. Qh ! . ahi Q‘I e "o‘nsq"f (jth column expansion)

Is there an easier way to complete the previous example?

¥
2 —; 4
B=/0 1 3
3 21

, 2 4 -\
det (6) = O&*\";’H\AXk\M 5\ - 5 dek -

0 +(w)-3(-\)

7]

Alternative Method to evaluate the determinant of a 3 x 3 matrix: Copy the first and second columns of the
matrix to form fourth and fifth columns. Then obtain the determinant by adding (or subtracting) the products

of the six diagonals. 12vr-n* 0 = &

2 -1 4 Z‘s}"/”\

B={0 1 3 a‘/,’b}'
3 2 1 V'Y -2

1]

({

@)1} s, t2p S

CREATED BY SHANNON MARTIN MYERS 81



~1440+045%8 = 610

1
Example 5: Find det(A) and det(B). 2
b
¥ - -
1 0 2 6 -
37 -1 0 QP ¥ Ord rwd = 242
=l 01 2 s
{3 5 -8 j L -5T10 = -%2%
y- X r -
7 o s dej,ZTl"L
- 1244 |€ - -6 &~
MLA)#\ML—\:’%%'\ O + 297 .3 5 -

B=

0 g b(“)(u‘) 26 .. W Mﬂﬁd}.‘x’ M “\9-4
N dgfex prvneony af o~ \c \amﬁk&gx mokrin 16 Yoo
RN produck of Yhe aloments o tha MHA%\SWQ~

v O | _ @)
dak (8) = “"M’Lz \A o

-
-

(W)
¥e3
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What did you notice?

%o PR

THEOREM 3.2: DETERMINANT OF A TRIANGULAR MATRIX

If Ais a triangular matrix of order 7, then its determinant is the _?(Od\ﬂk of the JAML on
the M@k N\ ijgQ_ Thatis, det(4)=|d|= _G-uP22%33" " Ppq
‘V

Example 6: Find the values of A, for which the determinant is zero.

‘,1—1 I (A‘\)()\‘3)‘ o \ = -c—uxin)’—T«z\)(‘Tsa

4 A1-3 . L“)
O = ;-*),%'3-‘4 _:_qt\l'ﬁ
= Ny A=\ z
o A A qut'bg

N 12-S i ) 7)’{5

—
r
nEm T »= 2108

Considgr the following matrix:

-1 2 1
A= 3 4 -]
1 0 1

Find the determinant.

\
b=k (A= lo\Q\'T\,\ o +1deT) 5y

-G -\0
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Now let’s put the matrix into row-echelon form. In other words, row reduce to an upper triangular matrix.

Keep track of\eac’;lele{nentary row (@}gni’n" Lg D \ b\ - - 5 ‘A\
b - z v\ \ —3

V2 |\
|6|AN —> mﬂlg-ﬂ-s 0 10 2
\ {1', | oo -3
32 4 ~-)
o1 Vv
|6 \\\M = 2% \'&7— >eT

-\
.z }ﬁ

What’s the determlnant of this ma

Take a closer look at the determinants o wo matrices. Do you notice anything?

THEOREM 3.3: ELEMENTARY ROW OPERATIONS AND DETERMINANTS

Let 4 and B be square matrices.

1. When Bis obtained from 4 by Jﬂ&@phﬂ%_\;g(wn%i) two _@uYS of 4

|6\ =-\A\

2. When B is obtained from A by __&d_d a md h?\b of a row of 4 to another row

of 4, l Bl = ‘A‘ . To clarify, the “new” row is not scaled, but the row used to get the new

row can be scaled. If the new row is scaled, you also use #3 below.

3. When Bis obtained from A4 by mh,l h‘[lﬂl!@ arowof Abya _|ONZexQ

QD“S"OJ\'\' @y = A

NOTE: Theorem 3.3 remains valid when the word “column” replaces the word “row”. Operations performed
on columns are called elementary column operations.
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Example 7: Determine which property of determinants the equation illustrates.

1 -1
. |4 12
3 -3
2 -4
b 6 10
8 —4

-1
12
-3

[—

[98)

B

() «—> (3

2= a/Z o 2ach W

o S

Example 8: Use elementary row or column operations to find the determinant of the matrix.

3 8
A=|0 -5
4 1
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THEOREM 3.4: CONDITIONS THAT YIELD A ZERO DETERMINANT

If A'is a square matrix, and any one of the following conditions is true, then det(4)=0.

1. Anentire (D (or c\mMn_ ) consists of 2LDS5 .
2. Two IS (or_ cohwminsd )are gqu.zkg-’ )
3. One (B (or oluwmn isa M&H‘Plzofanother {O\W (or c,c\mn).

Cofactor Expansion Row Reduction

Order n | Additions Multiplications | Additions Multiplications

3 5 9 5 10
5 119 205 30 45
10 3,628,799 6,235,300 285 339

Example 9: Prove the property.

l+a 1 1

1 1+ 1 :abc(1+l+l+l],a;tO,b;tO,c;tO,
a b c

| 1 1l+c

B W3 his R

(\wa)] | e
(1 (1eb)k ) - }1*[(\’«0"] e[1- ((r%)]

(o) (1x¢




3.2: PROPERTIES OF DETERMINANTS

Learning Objectives
1. Find the determinant of a matrix product and a scalar multiple of a matrix
Find the determinant of an inverse matrix and recognize equivalent conditions for a nonsingular matrix
Find the determinant of the transpose of a matrix
Use Cramer’s Rule to solve a system of linear equations
. Use determinants to find area, volume, and equations of lines and planes

Example 1: Find |4|,|B] ,|4||B| ,|4+ B|,|4|+|B|and |4B]|.
321 2 -1 4
1 -1 2 B={0 1 3
310 3 -2 1

R W

) ) )

A

find 1AL 181, 1Al], jAB], |Al <l A+ e

i y ¢) el (A)+ 4L (8) = 10+ () »
e % U 3:( ‘%1 ) s 5+ —!)
(oA %l -2 5—) det“{g):daiis’i

¢

et ()= sol? ) |- 1kd [, Ll S ,

=6(4H)-(¢-\) 3 2 5'
= 15-5 - = -\ deto ¢ \}ro -HJ-OJ’-(J 51
e} 114 +22

= -1 4

D=2 12 -0 ps’w[, 3]

- e °

al
Qdex (K) dex (8) = (0)ET) (70 ]
d)d&h(ﬁﬁ) =t Q:’) hal

-bM[:: ':l-z)ai’-[q ‘;]nﬁd&[}:ﬁl

20 (-441) 12071 -192) 115 (54 + ) ®
504150 us0
S s S

THEOREM 3.5: DETERMINANT OF A MATRIX PRODUCT

If A and B are square matrices of order 7, then

det, (AB) = d2C(A)dL (B)
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Example 2: Find |3A|and|3B|. lbl - ‘7 3
2 -1 4 As l%\= 3 (1)
A:F _1} B=0 1 3 A -% fl]
2X2 310 sz 3 2 1 |@9|=<5 E: —
|A1=13 i-« >\
(A 6L 6:3\
|%\‘M 0 n ]6/’&( ‘0*6\ e
LI S oy )
= |17 \6@? = -710 ¢ 8| ,
=355 2 - (9 V*Cﬂ}
|
THEOREM 3.6: DETERMINANT OF A SCALAR MULTIPLE OF A MATRIX :"3 .3 ) 3 7
If Ais a square matrix of order n andc is a scalar, then the determinant of |cA| is
¢ det (k)
Proof: “0“ Qw C e e 0_“1’1 'C.aou CO™ """ COq i
A s coe O - |C&,, Cogp - +" CO
bekt a?\ a‘,,,. . ?“’ ) CA U . - acoeﬁ
oL . ' . . L,
% Rz nn - LCoy, CO«M_ CA""‘J;" 4‘19)9“’.
dek (A) = éa,s(l ;
a-\ -t
” n- rree, e O
dg,t(cfg)z an'f)t' C;f Lo, Cu* ca G 2
6:(

2 cha... (/
"’zi )
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Example 3: Find 47", |A|, |A71|,B_1,|Bfl|, and |B|

3] 2

|&\ = -2 r\2=0 lel= 35-22 :@
o . o o _[1-2] [ e
20 A5 5\1‘3‘90*')/5\ DRE b = m -0 \° s %y
/\./
-\ - ’ZZ = E— = ._‘—-
e'\=A-"7% "1 ° 13

S
N

THEOREM 3.7: DETERMINANT OF AN INVERTIBLE MATRIX

A square matrix A4 is invertible (nonsingular) if and only if

det (A) 20

Example 4: Find |A| and |A_l|.

4o -3 3
o
B -2 Yo =2

-\ - ‘ - A
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THEOREM 3.8: DETERMINANT OF AN INVERSE MATRIX

If Aisan nxn invertible matrix, then

\ |
(A7) ° i

g\ﬂq, A s mwhbk, 3 A>3 AA" = .T_ = A.‘A) and

det (K) # D.[Thn 1] dek (AA™) =det(h)det(A")
and detc (AX") = det (L) =1. S deb(A)AL(A") = | Cﬂamésl

A &C(P\'\)’m-//

EQUIVALENT CONDITIONS FOR A NONSINGULAR MATRIX

If Aisan nxnmatrix, then the following statements are equivalent.

1. 4is_invetible

2. Ax=Db hasa _ug\m"uﬂ— solution for every _NX ‘ column matrix.

3. Ax =0 hasonlythe +r1via9~ solution.

4. Ais Cmb)/ggﬂé&. yaQ,Qn‘.?/ to fn

5. A can be written as the product ofi‘&m&d%; matrices.
6. dot (K)20

Example 5: Determine if the system of linear equatlons has a unique solution.

X +x, —x;=4 ) -\
2x, —=x, —x;,=06 2 -\ -—\
3x, —2x, +2x, =0 2-2 L

CH'U’()"‘D 20,5 3 b wuque
solution Yo o Lyotom .
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Example 6: Find |A| and |AT|.

0] e (k) = TR = 30

ATZEIZ 7:2_3 bt ()= -M-24=2-33

THEOREM 3.9: DETERMINANT OF A TRANSPOSE

If A is a square matrix, then det LAT) =) JQ“: (A)

Example 7: Solve the system of linear equations. Assume that ana22 1 =0,

by
a, x, +a,x, =b, ) A Gy Vb‘l B 2\ b
a, X, +a,x,=b, %) G &zt -

QM “\e'ncj\l-b lnk lw x’uéu\ y R &2\0\\1) = a’nbg,

Cv

0, b, O u QR YO Ggy Ra

[}
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O:Gux\‘aﬂmﬂo“*l ¥ an,aub"‘ auaw"’t - L
= By

a‘u 0\,_.,, B 0‘7,10“\’!/

G = -
X\ (0.“&0\1’1_' &u&\}&“) 'S CLHIQHL-,,’C&U \’Lb; \7! (0..‘(\11'%0.)

‘)L > W' ‘\'k‘anuﬂ*\)‘%\'b‘a/"&@

)

a‘n (&.\01,),’ °‘uan)
’X.\: U)/u(b. G373~ a’n—b»)
G

-0 b : |
I v by
- o. a. z 0«.\ 0‘11,’ aual’}'

(1/“0‘1,1 nov

M (A\) = W
7(.\= d«ok.(,A} 1J‘J— (}QI/GA)

b, (}‘wl
A\'{b., (298

Ay \D\X
Av: 1P bs



THEOREM 3.10: CRAMER’S RULE

If a system of 7 linear equations in n variables has a coefficient matrix A with a nonzero determinant |A| ,

then the solution ofth;:i_ite(r‘?\if) % dQC (AD) n f)ﬁim/ﬂ)
BN Y awnl])’ T LN

Where the jth column of Aj is the column of constants in the system of equations.

Example 8: If possible, use Cramer’s Rule to solve the system. 1

a. . }&\" ﬂ l,\
e s c,w”%s
Q(M“ 0\o¢§

b. "3 " ‘\O
—8x,+7x, —10x, =151 2 3 -5
12x,+3x, —5x,= 86 1&\: 5 _9 2
15x,-9x, +2x,= 187 ‘

oV

] ‘%‘Z‘} ot (A = 149
1371

Aol ()  \WaQ -
Yo = TElA =ta 'l ! (8(? -4 1
_ el (B2) -2a97 5, A;' n 86 -

dcL () A 15 (g 7/

Aels (3D _ DD
7‘3‘4//3( wu =9 N, 2 2 % 36

B‘ (A9, ‘9»N%M)I%ERsmns\$9(m\* S 92
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AREA OF A TRIANGLE IN THE xy-PLANE

The area of a triangle with vertices (xl,yl), (xz,yz),

\ (xzbgaﬂzxg)‘\()(. }‘

LN
_ T ) tA‘ - 1X3
Acen= EL deb |0 3l Yixs)
\ 1 (XY~
s 9% 9 x,.)
where the sign (£ ) is chosen to give positive area.
Ao - bitDa
Proof: '("“P 2
AQ& - ﬂ\"’ﬁ"
ap) ’—;—‘(’(z'xt
s

P> "‘Y:jt*

188
A z[(x
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Example 9: Find the area of the triangle whose vertices are ( (3 5), and (0, —2) :

TEST FOR COLLINEAR POINTS IN THE xy-PLANE

Three points (xl,yl), (xz,yz), and (x3,y3) are collinear if and only if

17(« \
Alt )47,31’ \ :O

X395 !

TWO-POINT FORM OF THE EQUATION OF A LINE

An equation of the line passing through the distinct points (x;,,) and (x,, y, )is given by

X \
det X|a\ \ =0
x’»‘ﬁ‘b\

VOLUME OF A TETRAHEDRON

The volume of a tetrahedron with vertices (xl,yl,zl) (xz,yz,zz) (x3,y3,z3), and (x4,y4,z4) is

\( (MT’X \Av;-b

where the sign (£ ) is chosen to give positive volume.
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Example 11: Find the volume of the tetrahedron with vertices (1,1,1), (0,0,0), (2,1,-1), and (-11,2).

LY 2
+ L
Nz~ |2y 7
-v\ 72
)
v “
BRIV A
<% VY
3 3 -
=t L _(4-D + (24 )-(V72)

TEST FOR COPLANAR POINTS IN SPACE

xl Hl $t '
(ket X, 5, Z3 |
X3 Y» Zs |
L4 §n Zu

Four points, (x,,,,2,), (%,7.2,), (X5, 35,2, ), and (x,,¥,,2,) are coplanar if and only if

=0

THREE-POINT FORM OF THE EQUATION OF A LINE

An equation of the plane passing through the distinct points (x

by ® z= \
dek | % 9 T

7(-.,31 2, |

X's‘ﬁ') %‘% \

2)’1:21)' (xzayzazz)rand (x3,y3,z3)is given
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3.3: GENERAL VECTOR SPACES

Learning Objectives:

1. Determine whether a set of vectors is a vector space
Determine if a subset of a known vector space V' is a subspace of V'
Write a vector as a linear combination of other vectors

Recognize bases in the vector spaces R", P ,and M

m,n
Determine whether a set S of vectors in a vector space V is a basis for V'
Find the dimension of a vector space

ou k~wn

DEFINITION OF A VECTOR SPACE

Let ' be a set on which two operations (vector addition and scalar multiplication) are defined. If the listed
axioms are satisfied for every u, v, and win V" and every scalar (real number) cand d , then V is called a
vector space.

Addition

1. u+visin V. wab under addition
> > , '{! ,

2. u+v= V& égmgllu@h property

a0croX 1N Eproperty

4. Vhasa_Z@2K0O vector _ O such that additivem

S a2 DO

forevery  inV, V¥ =N

> .
5. Forevery Y in V', thereisavectorin V' additive lnﬂé&

S 2 =
denoted by =¥ such that _\) ¥ (j 3) =0

Scalar Multiplication
6. cuisin \/ . Cm,under scalar mult.
-4 > . . 4
7. c(u+v)=_CA+ (&Y \ \ roperty

~ - . '
8. (c+d)u=__ ; tdt.\ d\ﬁhg huﬁ‘fg,property
Y
0. cfdu)= (AU asgexioh Ve, property

> - -
10. 1(u)=_U sl . M‘a\mﬂ@’entity
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THEOREM 3.11: PROPERTIES OF SCALAR MULTIPLICATION
Let V be any element of a vector space V', and let C be any scalar. Then the following properties are true.
-A > —) S =
1. ov=_ 0 3. LV =Q,then_ =0 or Ny =Q.
=4 S
2. c0= O 4. (-)jv=_—=V

Example 1: Determine whether the set, together with the indicated operations, is a vector space. If it is

not, then identify at least one of the ten vector space axioms that fails.

b
a. The set of all 2 x 2 matrices of the form S:{ . 1}:a,b,c,deR}.
C

(v 45 c
A'[él] ’6:&6\ 63 Md“AfB:qL gg

S s rot dosed undar aolditish .

b. The set of all 2 x 2 nonsingular matrices with the standard operations.
\ _ (” -\ - .

d:(“ A = X.lé %])-A :L\b "t‘] ace mé‘ﬁu&([mnzaro
F 2 : ' 50 52t is0 t (ogg g il
q A (-K) = [?,a} Whch 16 sungular N Wosed undaf
N‘gﬁ“ Algs | 'S:ngj i rot in thjo_sef, Sod s 3A =A

IMPORTANT VECTOR SPACES CONTINUED

( (=), 0Q) the setof all_condinuend  Fudchidrdefined on the real_pumhed iine.
C.i&g bl - the set of all_zandauasd _ T elfefined ona_c \esed
o¥zanl [a,b l .

L=thesetofal|%ﬂgm]_(£é.
E¢=thesetofau4@3n¢m@¢ofdegree$_w.

|‘_‘ x = the set of all _p\X. N~ matrices.
)N
E l =thesetofall _ NXN Matrices.
/l'\
=
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Example 2: Describe the zero vector (the additive identity) of the vector space.
a. C(—oo,oo) b. M,

Ot 5 (x) =0 5:[0000]

(y=a]

Example 3: Describe the additive inverse of a vector in the vector space.

a. C(-o,x) b. M,
|- 5(x) ( I§ A=l Be 85 S

Example 4: Determine whether the set of continuous functions, C(—oo, OO) is a vector space.

et ¥,9.h € ((-00,0) and ¢,d &R .

1. Closure under addition.

$(x) +30) =§+3)) € C(-0,0)/

2. Commutativity under addition.

(j-fs)(x) = §(x) "3(’6)
= d(x) \'F(K)

= (3r§)(>¢) v
.S(x) ¥ (arh)(x) = £(x) ,.sto) Hn(X)]
=L§(>c) £q ) ] £hoo)

- (549D () ¥hic) V
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4. Additive identity.

-j'(x) .\—3 = ‘S(K) + O
= &)/

) ii;-‘—(‘.f)] &) = $6)+[-500)]
o

(T}

D/

6. Closure under scalar multiplication.

50 = (D € Cl-wrp)/

7. Distributivity under scalar multiplication (2 vectors and 1 scalar).

He5¥9I)] = efifra) (») ]
RTINS

= H)r )/

8. Distributivity under scalar multiplication (2 scalars and 1 vector).

[(erd)F)) = (c#A)F&D
= J&®) +rdF )/

CREATED BY SHANNON MARTIN MYERS
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9. Associativity under scalar multiplication.

[e(a5)]6) = c[asT60)
= ¢ (45 D
= (A)56) Y

10. Scalar multiplicative identity.

(5D = | §x)
= $x)/

Conclusion? C(ol}d/bo) 5 a V(S-A-Q( S?&CQ'\

Example 5: Determine whether the set W is a subspace of the vector space V with the standard
operations of addition and scalar multiplication.

a. C[ 1 1]
W : The set of allyjnctlons that are dlfferentlable on -1 1]

W is & noounq*r\a subsaf of V [aiff. = continnitn ]
LQ)(‘S'Md éww\dwték

f;‘\/f“) Xg(x) - 2 jfﬂx) ¥3(>4)] A'UHS)(")/\/

La\%g ) = ,- c.%(x)X/
C W 5 @ swspaes- of V.
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b. V:C(—oo,oo)

W :The set of all negative functions: f(x)<0.
2
JW)=-x <o
6= -5

46)= -5(x") = 5% >0
WS poF closed wrder seolal Wt

c. V:C(-o0,) Lffr

,
W :The set of all odd functions: f(—x)=—/(x).

8( £(x)= w

W}J 0‘) = 5((\;(,?
G’rf))(*x) 37 -(f 'rf))‘(x)
-« rsnlx) = - ( AN )
kit ) = — (i )Y

' y swhsd of V-
S E e e focors, o4 e e5ee)
(54460 = §-x) + § & > e[-56)
3 = -5’(%)1’(’36‘7) = «Ef[,c)/

NNNNNNNNNNNNNNNNNNNNNNNNNNN

-({—(ﬁ)aﬁ(n)) f Wi subgpa%dgﬁlill,



d. V{M neZ}

W :The set of all n x n diagonal matrices.

90,p 0
w\sml\mw\\)’(&svbsd'af—\l Lt A 2|7 5 |

b, 8 O--,Sa
bz c) b;-,,o D ' é 6L‘ "
: ®,0---0
.o Obm Az e |oaRd O
N A, thy, 9---° é \'\)j . “‘ a
X O &ﬂj’h)ﬁd .0 LO-” OQl\n J
; 0 00---Q
“ s v o (¢ @ ’(\O‘“\ C&
D (4 3 - . Can O
e. W :The set of all n x n matrices whose trace is nonzero. . ‘. Q
V neZ + -0 C(K“"J
of! ‘L ks 0 09 AN EW J
A4S 6 o2 & Ho =2 '
19 A 0@() 050160-\)50&0-0"\1

T ro} c\osed urdes Seod . wd’r
Yotz \k9+\ =020 |_—

f. V:C(—o0,0)
W:{ax+b:a,beR,a+0}

F(x)= b‘o"g
66") = '2)(“

(5_ )b“):<b(+5)*' («Z)&» D,
S s0%x¢M d\ﬂ
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g. V:{Mm’n :m,neZ+}

W:{[a 0 \/Z:|TZCIER,CIZO}

polp 0 BT o) [oh ok onder abdiion |

g> (2 0 V;JT
2 25!

Example 6: For the matrices

2 -3 0 5

A= and B =
4) 1 1 2
(' =

in M, ,, determine wheth®'the given matrix is a linear combination of 4 and B.
6 -19 > - 2
107 CN T Qe =
>

¢ -\1
2 Q,A{'C-ve =
: o

w, <%, |, Oy S | - 6~

L\c‘ 16| | VCr G o |
e, =5 -

_3(2)¥9C, ="
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S

(8 2 o x
ConsiderPn(x): aa A’a‘)( ‘Pa‘LX “’a‘&\k “' SR ‘\' n
L

Example 7: Determine whether the set of vectors in P, is linearly independent or linearly dependent.

!
v\,\lu 3 B
D

LN ACN, 20 o

¢ R +c2(x;ﬂ) :
L, + (e ycﬂx 0rOX

=9 NEE \\nmf\é.,\'\‘degm\dﬂ\f

Example 8: Determine whether the set of vectors in M, , is linearly independent or linearly dependent.

S_{ : 0} {_4 _1} {_8 _3}}
=3 1l o0 5-6 17
- N N

0\1 ‘I'CL\) i'c,S\/.3 g -5 I

13 (}‘I’C 1 5 ,"4'\-11; o 9

2¢,-4¢,-8cy 20 7 2(<2c3) -4(-9¢4)-8%;=0 3c, =)
= Ca~ 3‘5‘6‘56 ==%¢, = -5

'56‘ “ch -()—3 C. 5"163 = -2

\ S.nct?l s rontaviok salution +o Yha equakion, ) .‘;(
| depardem Y, |




Example 9: Write the standard basis for the vector space
a. Mz 2

o1 o1 1e8 | 1971 199 Fg
8‘2“30;\0\ bosis = \%)%’X)\;ngloil)k OX’[Sng‘ g
W

ﬂ:\ l+OX ¥o
0 kIR YO

, ;‘\-OyOAH X rOx
>

20, tAX T, X + % R, | OtOX+O

')

X ¥Ox
¥ Q%

‘A

‘J

\\\

)
X »\Ix
/ !
S{ﬁnm Yo\5 = 2\,')6,1, X

Example 10: Determine whether S is a basis for the indicated vector space
S = {41~ £,541°,31%5,20 5 3¢7} for B,
v N, N,

' 4 3 %

D (f’b) X

Cheek- Sor tin-\nd: 2 =3
\l\'(.‘j'bfc LN

(vct/c)n B 1, (B ¥ 5c, (21 ,31;) O
ket -CC ¥9C, rctgwcms%*m BeC

(50,.+5c3) ¥ (‘\c Yy D)k ¥ (,c, -%¢ )H(c,,nc,,) muwt

O+ot+ot

Ok b,
=0 -\t
ra o A 005 A‘QXU\B %0 #9
- <, ’36 = O VO 2
C, ric, O,
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Example 11: Find a basis for the vector space of all 3 x 3 symmetric matrices. What is the dimension of
this vector space?

D "\mmm . the woitst baos o fird tsﬂ\a,S{'N\Jo&d beowo . )
2) Whaly Aao:) o Hxh sﬁmmnkﬂg wad(ix \sk e in 3ano.mﬂ

lk a |}
a\‘b N %1‘5

Oy By 35 oo 519 oool oog
Chandosh oASS Sor 0 o0 100 | |090 '0‘0 )
9’/?) m(h\c-‘ . dOD o
m \ D O

o

Example 11: Let T be the linear transformation from P, into R given by the integral 7'(p)= I;p(x)dx.

Find the preimage of 1. That is, find the polynomial function(s) of degree 2 or less such that 7'( p) =1.

T
\) T:0 > & 2) [0 =00, ¥ R £ QK
/réﬂ) = K P (k) = Z(\-aob)%lon( F3bx:
S?Cx)dﬁ = | a,\,e\?-}
5&0\ YO XY %]dx :
) 3 %z \ \
RS 3 xz0

(0\* a’rg w) (O)"\
,\-).a,aga,,)wj-a. 24 andaz b

ab’ l’avdlﬂ
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3.4: RANK/NULLITY OF A MATRIX, SYSTEMS OF LINEAR EQUATIONS. AND
COORDINATE VECTORS

Learning Objectives:

1. Find a basis for the row space, a basis for the column space, and the rank of a matrix
Find the nullspace of a matrix
Find a coordinate matrix relative to a basis in R"

Find the transition matrix from the basis B to the basis B' in R"
Represent coordinates in general n-dimensional spaces

ke W N

Let’s do our math stretches!
Consider the following matrix.

D A 2
C\ C; 63 d Y
1 3 -1 5| ¢,
A = -3
7 1 13 6| €2
The row vectors of A are: The column vectors of A are:

T ] T T
% _ _
(V,%,-\,2) (1) Nbe) (), (BN ) ( \)\3)/ (5.6

e [\ 3 -\ 6]/]_1 \ 1% (,} L%])S'g'}'t%]‘j]

DEFINITION OF ROW SPACE AND COLUMN SPACE OF A MATRIX

Let 4 be an m x n matrix.

The _(O\) spaceof A is the&mp&&ﬁ R”j@Mby the [OW)  vectorsof A.

The gfg\umn space of A is the subspace of Rm_w_ by the CO'LLmn. vectors of

A.
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Recall that two matrices are row-equivalent when one can be obtained from the other by

M operations.

THEOREM 3.12: ROW-EQUIVALENT MATRICES HAVE THE SAME ROW SPACE

If an m x n matrix A is row-equivalent to an m X n matrix B, then the row space of A is equal to the row
space of B.

Proof:

Sinee. At pqumaw & 3 afinile number of clemont oy
ki Bofey -0 € 3 82 E B EEA I} s fhat
the 12U vedos of B can e N o Qinaar combiahiono
el Yo oW wcters of A ThemDJZOHrSOFB ,Q,,a,mﬂxo_/
(0w SpPoCe o% P\ 6k e %A’-"DPPML';M

W) vedore of P 15 Contrmedh nAbe o st
S\“\\\N’\ © wd:%o% b&dﬁVgo}i\ Q\\C \Q\ ﬁ\Lm 6W<L a‘g—B N'\A/

annud by Ahs W) RogoT A is con
b “‘?WOF@ i L s 02 bipradsg s

0 /
THEOREM 3.12: BASIS FOR THE ROW SPACE OF A MATRIX

If a matrix A is row-equivalent to a matrix B in row-echelon form, then the nonzero row vectors of B form a

MSS S  forthe row space of 4.

To find a basis for the row space of a matrix: fou reduce the matrix. The mw-o rows in the

g’;&gggk matrix are a M\ Q2 for the row space of the matrix. Your answer should be in the
form of a Se,k: of fOM) vectors.

To find a basis for the column space of a matrix:

Method 1: Use the steps above on the transpose of the matrix. Your answer should be in the form of a _ )Ql of

Ch\ wnn vectors.

Method 2: Use reduced form of the original matrix to find the columns which contain the ?\‘(0'\—5 (leading

ﬁhﬂ, ). Use the corresponding columns from the O(\C\‘ h& matrix for a basis. Your answer should be

in the form of a &A; of Q\!M!X‘D vectors.
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S 2
c Cyr C3
Example 1 lmd a basis for the row space and column space of the followmg m&rlx

Q 45 |1,
A@ 1 W‘Qf(.f‘\) %@ 1/6 =
g
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THEOREM 3.13: ROW AND COLUMN SPACES HAVE EQUAL DIMENSIONS

If Aisan mxn matrix, then the row space and the column space of A have the same d“!!(ﬂﬁugﬁ .

DEFINITION OF THE RANK OF A MATRIX

The A\ ' O/ ofthe fow) (or Column ) space of a matrix A is called the

_my-_of A and is denoted by ('(mL‘ A ) )

Example 3: Find the rank of the matrix from

a. Example 1 b. Example 2
- (K)- 2 )= |

—

THEOREM 3.14: SOLUTIONS OF A HOMOGENEOUS SYSTEM

If Aisan mxn matrix, then the set of all solutions of the homogeneous system of linear equations

15\’; = 3 is a Su\vSOOQQ, of K“ called them\gm of A and is denoted
N(‘A‘) . So, NLP‘3 %X‘GJL A)( O g

The Amggﬁ‘pn‘ of the nuIIspace of A is called the r\géh t}é of A .

@)
r°°gmcc A 5 mxo, X \r\AS nx\ So Yha ca)of all So\\dcwhs Y
Yo be,asw‘ogd‘ o} N Thoo 02k has o be mnemp\-la. Gn-

P;O3 . N R .
A(,g \—Xb) Aﬁ ‘\'sz O\'O =O)SOP(‘5<\OSZJM+'

ACeX) = ¢(AR) = D =3 so A\S closed ardar Gl mult
;o Rx=B s o sebspee of B
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Example 4: Find the nullspace of the following matrix A, and determine the nullity of A4 .

1 4 2 1 N fx,
A= 0 1 1 -1 r =1 Xa

x4 | 2 8 4 2

-
AR =0

ey (A) =

THEOREM 3.15: DIMENSION OF THE SOLUTION SPACE Io\/—\J

N

If Aisan mxn matrixof rank ¢, then the dimMWSION  of the solution space of
-

S
_A)‘ =D is_n-¢ . That is,

n = cant(A) + nulliny UX )
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Example 5: consider the following homogeneous system of linear equations:

x—y=0
—X+y= 0 ‘9 h@m m@m

a. Find a basis for the solution space
AR
A= -1 J 3

n"o;]'(P() “']}-% X, — LJ—O —» % = 43_-’?1/"!:»

3 =t
2 :[E]st“]

A basis oo fiu Golutien spaais g[':}i

r
b. Find the dimension of the solution space. ( nud| "'3( k))

0

c. Findthe solutlon of a consistent system Ax=b inthe form X, +X,

AR =L — {[]4'1:[}
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THEOREM 3.16: SOLUTIONS OF A NONHOMOGENEOUS LINEAR SYSTEM

If X, is a particular soluti‘g of t& nonymogeneous system Ax =b, then every solution of this system can

be written in the form X = X?’\‘Xh where X, is a solution of the corresponding homogeneous

system X= D
= >
Proof: | ot R be an go\udlsnof AX=b. Then X -Xp 15 &
- S —_ N Y
Souion to” AX=0. A(X-X) =0 = A% -AR, =0,
- AN
whichs g US b -1 =0 . Let X, = X=X, , thio
S0 L
X = XP ‘\'Xh V/4
THEOREM 3.17: SOLUTIONS OF A SYSTEM OF LINEAR EQUATIONS
=
The system A§ =‘£ is consistent if and onlyifLisinthecolumn space of A .
Proof: B T 'a 2 on
(a, B " ®*in M ‘g“ a' "
Ai\‘v ' a Ry “ v for ke Xa G20
Ay Ay -- " Oann : = A, |4y [HXe AsY Gan
. . . . . . . /
v : ' . Z .
&, Bmy, <o R Kn y Lamd  LAw Qe

BS > “’a‘ . .
o AR=b ifF b=k, | 15 o AW conbo of fhe cohemnS

i) .
of K. Thad’s , tha cystem is oncistan ) b € Subspa
R™ spamed oy Hha colws of Ay
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Example 7: consider the following nonhomogerjous system of linear equations:

2x—4y +5z= 8
~Tx+14y+4z=-28 Y
3x =6y +z= 12
Determine whether Ax = b is consistent.
2k 5 87 ¢ 1 -20[H4]
gl V| o
—7 N fl23 | —|o o
2, 12 0 00|°

o
4 154 1 r t
26 Y41 7 Y 2t
i 4
x: ‘C - 0 ‘— ‘L 2 |0 “'t Z
-

—

> T :
% AX =b is cansidtent,

If the system is consistent, write the solution in the form x = X, +X,, where X, is a particular solution of

Ax=b and X, is asolution of 4x=0. \

-

w 2

’ic l;\) v \ 1S a,SO\\d'l@'—l
O

03 |

‘) )

Kp *i

—— —

-

4

. ________________________________________________________________________________________________________|
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COORDINATE REPRESENTATION RELATIVE TO A BASIS
Let B={V,,V,,...,v, } be an ordered basis for a vector space /", and let x be a vector in } such that

= > > A
X=CeN, ¥V, ¥ -~ + CnVa

2 :
The scalars ¢,,c,,...,c, are called the chro\mod'és of _X relative to the bdsls 6 .The

- .Y
_(_d_um_n_ matrix (or coordinate moj'\’l)()of K relative to b is the (a‘gm matrix in

0 >
ﬁb whoseMarethecoordinatesof A .
TC\ ‘1
. = | C
[x], = |
é

Un

n L - >
Note: In Q , column notation is used for the coordinate matrix. For the vector xX= (X \ Xz_, .- ":7“(\ )

Y . n
the l] 'Sare the coordinates of )% _(relative to the_ﬁj@p‘a{d bosIS S for K .So
4 x ' q
BN B I
[X ] g il
X

e

you have

Example 8: Find the coordinate matrix of x in R" relative to the standard basis.
x=(1,-3,0)

5 - %C‘/O/o), (51,0),(2,0, ')g
< = | (\Jo/o) - 5(0, \O) ¥ ol(o))

-

. l
[K1g= |3
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Example 9: Given the coordinate matrix of x relative to a (nonstandard) basis B for R", find the
coordinate matrix of x relative to the standard basis.

B={(4.47.3).(0.351-1).(-34 2.1).(04:5.0)
-2

Ve Vs V4
|3 N N A
=] ;Z = ON), YeN, v CNg¥ CyVy
1 S

2 = =247 ¥3(8,5,,4) +4(34,2)£1(3,\,50)

Example 10: Find coordinate matrix of X in R" relative to the basis B’.

B'={(-6,7),(4,.-3)}, x=(-26,32
(-6 7). (453)} x=(-26.32)

Vi oV, I >

X =0V yC N,

(- = (, CboT) Yes Ctt;9)

S
The matrix F is called the +(an5\hgn Mﬂx from Etoi, where [x]é/ is the

S Y} )l KN
coordinate matrix of X relative to 6 ,and 65 the coordinate matrix of )@ relative to 6

{
Multiplication by the transition matrix F changes a coordinate matrix relative to E into a coordinate

matrix relative to 6 .
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Change of basis from &/ to & :
) - (=
Pl ]g' = X3,

/

Change of basis from L to i:
-\ S
F L'))(]b = LX 161

The change of basis problem in example 10 can be represented by the matrix equation:

A W P 2%
Ve :‘3] L Sz[zz
?[; 3[)‘13 z-4 ke
= .-L
SIWPT oty - R | o

THEOREM 3.18: THE INVERSE OF A TRANSITION MATRIX

If Pis the transition matrix from a basis B’ to a basis Bin R", then p is invertible and the transition

matrix from 6_to &l is given by L'. ﬁﬁl . /”"a- haf‘SIHOW m'*r'kﬁam 51“1 6

16 C.

LEMMA

Let B :{vl9v29”"vn} and B’ ={u1,u2,...,un} be two bases for a vector space V . If

vV, =¢u +cu, +---c u

nl™>n

vV, =¢,u, +c,,u, +---C,,u

n

vV, =¢,u +c,u, +---Cc, U

nn n
/
then the transition matrix from & to 5 is
Cll Cln
cnl cnn
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THEOREM 3.19: TRANSITION MATRIX FROM BTO B’

=1
Let B={v,,v,,...,v,}and B'= {ul,u2,...,un} be two bases for R” . Then the transition matrix _f from
¢

9 to can be found using Gauss-Jordan elimination on the n x 2n matrix [B’ B]as follows.

@w educ? 1& gl +o [T, P71

/
Note: The transition matrix from 9 to 6 can be found using Gauss-Jordan elimination on the

OISZD matrixL& 6/} as follows.
s ceuce, (8 E1 10 [Tn Pl

Example 11: Find the transition matrix from Bto B'.

B={(11),(1,0)}, B'={(1,0),(0,1) for *

Z andasd boo 15

(¢ o] ijm

Example 12: Find the coordinate matrix of p relative to the standard basis fog6 P,.
2 Z

p=3x"+114x+13 6 - l) x)x /X
=317 1
v, VoV Yy 5

Z
C. U)%c,_(x) +Cs (x )+cq (,(5) = 15 44 X f%)(
Z 5 2
b & CRHC R XX = 1 ¥ MK 13X ¥ OX

¢ 2 ) |a7
o e <)
63’5 QD
6“:0 ~
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3.5: THE KERNEL, RANGE, AND MATRIX REPRESENTATIONS OF LINEAR
TRANSFORMATIONS, AND SIMILAR MATRICES

Learning Objectives:

1. Find the kernel of a linear transformation

Find a basis for the range, the rank, and the nullity of a linear transformation

Determine whether a linear transformation is one-to-one or onto

Determine whether vector spaces are isomorphic

Find the standard matrix for a linear transformation

Find the standard matrix for the composition of linear transformations and find the inverse of an
invertible linear transformation

Find the matrix for a linear transformation relative to a nonstandard basis

Find and use a matrix for a linear transformation

9. Show that two matrices are similar and use the properties of similar matrices

ok wnN

0 N

THE KERNEL OF A LINEAR TRANSFORMATION
We know from an earlier theorem that for any linear transformation , the zero vector in

maps to the vector in . That is, . In this section, we will consider whether

there are other vectors such that . The collection of all such is

called the of . Note that the zero vector is denoted by the symbol in both

and , even though these two zero vectors are often different.

DEFINITION OF KERNEL OF A LINEAR TRANSFORMATION

Let 7:V — W be a linear transformation. Then the set of all vectors v in V' that satisfy is

called the of 7" and is denoted by

Example 1: Find the kernel of the linear transformation.
a. T:R* >R .T(x,y,z)=(x,0,z)

. ________________________________________________________________________________________________________|
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b. T:PR —>P2,T(a0+a1x+a2x2+a3x3)=a1+2a2x+3a3x2

T:P,—>R,

T(p)=], p(x)dx

THEOREM 3.20: THE KERNEL IS A SUBSPACE OF V

The kernel of a linear transformation 7' : V" — W is a subspace of the domain V.

Proof:

. ________________________________________________________________________________________________________|
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THEOREM 3.20: COROLLARY

Let 7: R" — R" be the linear transformation given by 7'(x) = Ax . Then the

kernel of 7" is equal to the solution space of

THEOREM 3.21: THE RANGE OF T IS A SUBSPACE OF W

The range of a linear transformation 7' : V' — W is a subspace of IV .

-

THEOREM 3.21: COROLLARY

Let 7:R" — R" be the linear transformation given by T(x) = AX . Then the column space of is
equal to the of

Example 2: Let T'(v) = 4v represent the linear transformation 7. Find a basis for the kernel of 7 and the

range of 7.
I 1
A=|-1 2
0 1

. ________________________________________________________________________________________________________|
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DEFINITION OF RANK AND NULLITY OF A LINEAR TRANSFORMATION

Let 7 :V — W be a linear transformation. The dimension of the kernel of 7T is called the

of T' and is denoted by . The dimension of the range of T’

is called the of T" and is denoted by

THEOREM 3.22: SUM OF RANK AND NULLITY

Let 7:V — W be a linear transformation from an n-dimensional vector space V into a vector space W . Then

the of the of the and is
equal to the dimension of the . That is,
Proof:

. ________________________________________________________________________________________________________|
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Example 3: Define the linear transformation 7' by 7'(x) = 4x. Find ker(7'), null(7'),range(7'), and
rank (7).

3 2 6 -1 15
A=4 3 8 10 -14

2 3 4 4 20

Example 4: Let T : R’ — R’be a linear transformation. Use the given information to find the nullity of T
and give a geometric description of the kernel and range of 7.

T is the reflection through the yz-coordinate plane:

T(x,y,z) = (—x,y,z)
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ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS

If the vector is the only vector __ such that ,then s
. A function is called one-to-one when the
of every __ inthe range consists of a vector. This is equivalent
to saying that ____ is one-to-one if and only if, for all and in , implies
that

THEOREM 3.23: ONE-TO-ONE LINEAR TRANSFORMATIONS

Let 7 :V — W be a linear transformation. Then T is one-to-one if and only if

Proof:

. ________________________________________________________________________________________________________|
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THEOREM 3.24: ONTO LINEAR TRANSFORMATIONS

Let 7:¥V — W be a linear transformation, where W is finite dimensional. Then 7' is onto if and only if the
of T' is equal to the of W.

Proof:

THEOREM 3.25: ONE-TO-ONE AND ONTO LINEAR TRANSFORMATIONS

Let 7:V — W be a linear transformation with vector spaces V' and ¥, of dimension n. Then

T is one-to-one if and only if it is

Example 5: Determine whether the linear transformation is one-to-one, onto, or neither.
T:R* >R, T(x,y)=(x—y,y—x)

DEFINITION: ISOMORPHISM

A linear transformation 7 :V — W thatis and is called an

. Moreover, if I and W are vector spaces such that there exists an isomorphism

from ¥ to W, then ¥V and W are said to be to each other.
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THEOREM 3.26: ISOMORPHIC SPACES AND DIMENSION

Two finite dimensional vector spaces V' and W are if and only if they are of the

same

Example 6: Determine a relationship among m, n, j, and k such that M, is isomorphicto A, .

WHICH FORMAT IS BETTER? WHY?
Consider 7: R* — R3,T(x1,x2,x3) = (4x1 —x, —5x;,—2x, +x, +6x;, X, —3x3)

and

4 -1 5] x
T(x)=d4Ax=|-2 1 6]||x,
0 1 -3|/x

What do you think?

The key to representing a linear transformation by a matrix is to determine how it acts on a
for . Once you know the of every vector in the ,
you can use the properties of linear transformations to determine for any in

Do you remember the standard basis for R" ? Write this standard basis for R" in column vector notation.

B={e,e,,...e,} =
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THEOREM 3.26: STANDARD MATRIX FOR A LINEAR TRANSFORMATION

Let 7: R" — R" be a linear transformation such that, for the standard basis vectors e, of R",

_all_ _a12_ _aln_
T(e)=| “|. T(e,)= “;2 o T(e)=| |
_aml_ _am2_ _amn_

then the mxn matrix whose n columns correspond to T'(e,)

a, ... a
A=| :

is such that 7(v) = Av for every vin R". A is called the standard matrix for 7 .

Example 5: Find the standard matrix for the linear transformation T .
T(x,y)=(4x+,0,2x-3y)

Example 2: Use the standard matrix for the linear transformation T to find the image of the vector V.
T(x,y)=(x+y,x—»,2x,2y), v=(3,-3)
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Example 6: Consider the following linear transformation T':
T is the reflection through the yz-coordinate plane in R*:T(x,y,z) =(—x,y,z), v=(2,3,4).

a. Find the standard matrix A for the following linear transformation 7.

b. Use A tofind the image of the vector V.

c. Sketch the graph of Vand its image.
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THEOREM 3.27: COMPOSITION OF LINEAR TRANSFORMATIONS

Let 7,: R" — R” and T, : R™ — R” be linear transformations with standard matrices 4, and 4,, respectively.
The composition 7': R" — R”, defined by 7'(v) =T, (T1 (v)) , is a linear transformation. Moreover, the
standard matrix A for T is given by the matrix product A= A4, 4, .

Proof:

Example 7: Find the standard matrices 4 and A4’ for 7=T7,07, and T' =7, o7,.
T:R* >R, T,(x,y)=(x,3,»)
T, ‘R> > R?, Tz(x,y,z)=(y,z)
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DEFINITION OF INVERSE LINEAR TRANSFORMATION

If 7, : R" — R" and T, : R" — R" are linear transformations such that for every v in R",

then 7, is called the of 7, and 7] is said to be
**Not every transformation has an f is ,
however, the inverse is and is denoted by

THEOREM 3.28

Letis 7: R" — R"be a linear transformation with a standard matrix A . Then the following conditions are

equivalent.
1. Tis
2. Tisan
3. Ais
4. If Tisinvertible with standard matrix A , then the standard matrix for is

Example 8: Determine whether the linear transformation 7'(x, y) =(x+ y,x—y) is invertible. If it is, find

its inverse.

. ________________________________________________________________________________________________________|
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THEOREM 3.29: TRANSFORMATION MATRIX FOR NONSTANDARD BASES

Let V" and W be finite-dimensional vector spaces with bases B and B’, respectively, where
B={v,v,,...V,}.

If 7:V — W is a linear transformation such that

a,, a, a,
I:T(Vl):IB’ B ale ? I:T(VZ):IB’ - afzz > I:T(V” )]B' - azn ’
a,, a,, a,.,

then the m xn matrix whose n columns correspond to [T(vl)]B,

A=

Example 9: Find 7' (v) by using (a) the standard matrix, and (b) the matrix relative to B and B'.
T:R>—> R*, T(x,y,z) = (x—y,y—z), V= (1,2,3),

B={(1,1,1),(1,1,0),(0,1,1)}, B'={(1,2),(1,1)}

. ________________________________________________________________________________________________________|
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Example 10: Let B = {ez",xezx,xzez"} be a basis for a subspace of W of the space of continuous functions,

and let D_ be the differential operator on W . Find the matrix for D_ relative to the basis B.

. ________________________________________________________________________________________________________|
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A classical problem in linear algebra is determining whether it is possible to find a basis such that the

matrix for relative to is

1. Matrix for T relative to B:

2. Matrix for T relativeto B':

3. Transition matrix from B'to B:
4, Transition matrix from Bto B':

. ________________________________________________________________________________________________________|
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Example 11: Find the matrix A'relative to the basis B’.
T:R* > R’, T(x,y)=(x-2y,4x), B'={(-2,1),(-11)}

. ________________________________________________________________________________________________________|
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Example 12: Let B ={(1,—1),(—2,1)} and B' = {(—1,1),(1,2)} be bases for R?, [v], =[1 —4]T, and let

2 1
A= |:0 J be the matrix for 7: R> — R? relativeto B.

a. Find the transition matrix P from B’ to B.

b. Use the matrices P and A to find [V]Band I:T(V)B,:I where [V]B, =1 —4]T.

. ________________________________________________________________________________________________________|
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DEFINITION OF SIMILAR MATRICES

For square matrices 4 and A'of order n, A’ is said to be similar to 4 when there exists an invertible
matrix P suchthat 4'= P 'AP.

THEOREM 3.30

Let 4, B,and C be square matrices of order 7 . Then the following properties are true.

1. Ais to

2. If Aissimilarto B, then is to

3. If Aissimilarto B and B issimilarto C, then is to
Proof:

Example 13: Use the matrix P to show that 4 and 4" are similar.

100 2.0 0 2 00
P={1 1 0|A4=]0 1 0| A=|-1 1 0
111 0 0 3 2 2 3

. ________________________________________________________________________________________________________|
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DIAGONAL MATRICES

Diagonal matrices have many advantages over nondiagonal matrices.
d 0 0 0 0

Do 0 d, 0 Dt — o 0
0 O d.n 0 0 o

Also, a diagonal matrix is its own . Additionally, if all the diagonal elements are

nonzero, then the inverse of a diagonal matrix is the matrix whose main diagonal elements are the

of corresponding elements in the original matrix. Because of these advantages, it is

important to find ways (if possible) to choose a basis for such that the
matrix is .
34 1
2 2
Example 14: Suppose 4 = —% 2 % is the matrix for 7: R> — R’ relative to the standard basis.
ry 2
L 2 2]

Find the diagonal matrix A’ for T relative to the basis B’ = {(1,1,—1),(1,—1,1),(—1,1,1)} .

. ________________________________________________________________________________________________________|
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Example 15: Prove that if 4 isidempotentand B is similarto 4, then B is idempotent. (An » x n matrix

is idempotent when 4 = 4%).
Proof:

. ________________________________________________________________________________________________________|
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4.1: INNER PRODUCT SPACES

Learning Objectives:
1. Find the length of a vector and find a unit vector
2. Find the distance between two vectors
3. Find a dot product and the angle between two vectors, determine orthogonality, and verify the
Cauchy-Schwartz Inequality, the triangle inequality, and the Pythagorean Theorem
4. Use a matrix product to represent a dot product
5. Determine whether a function defines an inner product, and find the inner product of two vectors in

R"', M, ., P, and C[a,b]

6. Find an orthogonal projection of a vector onto another vector in an inner product space

m,n?

v

DEFINITION OF LENGTH OF A VECTOR IN R”

The , , or of avector v={v,v,,...,v,}

in is given by

When would the length of a vector equal to 0?

Example 1: Consider the following vectors:

() et

a. Find ||u||

. ________________________________________________________________________________________________________|
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b. Find ||V||

c. Find [u+|v]

d. Find ||u+v||

e. Find ||3u||

f.  Find 3|ul|

Any observations?

. ________________________________________________________________________________________________________|
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THEOREM 4.1: LENGTH OF A SCALAR MULTIPLE

Let vbe avectorin R"and let cbe a scalar. Then

where is the of c.

Proof:

THEOREM 4.2: UNIT VECTOR IN THE DIRECTION OF v

If v is a nonzero vectorin R", then the vector

has length and has the same as v.

Proof:
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Example 2: Find the vector v with ||v||=3 and the same direction as u=(0,2,1,-1).

v

DEFINITION OF DISTANCE BETWEEN TWO VECTORS

The distance between two vectors uandv in R"is

. ________________________________________________________________________________________________________|
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Example 3: Find the distance between u = (1,1,2) and v= (—1,3,0).

v

DEFINITION OF DOT PRODUCT IN R"

The dot product of u = (ul,uz,...,un)and V= (vl,vz,...,vn) is the

quantity




DEFINITION OF THE ANGLE BETWEEN TWO VECTORS IN R”

The between two nonzero vectors in R" is given by

Example 4: Find the angle between u = (2, —1,1) and v= (3, 0,1).

. ________________________________________________________________________________________________________|
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Example 5: Consider the following vectors:
u=(-12) v=(2.-2)

a. Findu-v

b. Find v-v
c. Find ||u||2
d. Find (u-v)v

e. Find u-(SV)
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THEOREM 4.3: PROPERTIES OF THE DOT PRODUCT

If w, vand w are vectorsin R", and cis a scalar, then the following properties are true.
1. u-v=

2. u-(v+w)=

3. ¢c(u-v)= =

4. v-v=

5. v-v>0andv-v=0 iff

Example 6: Find (3u—V)-(u—3V) giventhat u-u=8, u-v=7 ,and v-v=6.

THEOREM 4.4: THE CAUCHY-SCWARZ INEQUALITY

If wand v arevectorsin R", then

where denotes the valueof u-v.

Proof:
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Example 7: Verify the Cauch-Schwarz Inequality for u = (—1, 0) and V= (1,1).

. ________________________________________________________________________________________________________|
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DEFINITION OF ORTHOGONAL VECTORS

Two vectors uand v in R" are orthogonal if

Example 7: Determine all vectors in R’ that are orthogonal to u = (3,1) .

THEOREM 4.5: THE TRIANGLE INEQUALITY

If wand v arevectorsin R", then

Proof:
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THEOREM 4.6: THE PYTHAGOREAN THEOREM

If wand v are vectorsin R",then uand v are orthogonal if and only if

Example 8: Verify the Pythagoren Theorem for the vectors u = (3,—2) and v = (4,6) )

DEFINITION OF AN INNER PRODUCT

Let u, v, and w be vectors in a vector space V', and let ¢ be any scalar. An inner product on V is a function
that associates a real number (u, v> with each pair of vectors u and v and satisfies the following axioms.

1. <u,v> =

2. <u,v+w>:

3. c<u,V> =

4, <v, V> >0, and <v, V> =0 1iff

NOTE: The product is the product for
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Example 8: Show that the function <u, V> =u,v, + 2u,v, + u,v, defines an inner product on R’, where,

u=(u,u,,u;) and v=_(v,v,,v;).

. ________________________________________________________________________________________________________|
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Example 9: Show that the function <u, V> =u,v, —u,v, —u,v, does not define an inner product on R>,

where, u=(u,u,,u;) and v=(v,v,,v;).

THEOREM 4.7: PROPERTIES OF INNER PRODUCTS

Let w, v, and w be vectors in an inner product space V', and let ¢ be any real number.
1. <0,V> = =

2. <u+v,w>=

Proof:

3.<u,cv> =

DEFINITION OF LENGTH, DISTANCE, AND ANGLE

Let wand v be vectors in an inner product space V.

1. The length (or )of u is

2. The distance between uand vis

3. The angle between and two vectors u and v is given by

4. wuandvare orthogonal when
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If ,then uis called a vector. Moreover, if v is any nonzero vector in an

inner product space V', then the vector is a vector and is

called the vector in the of v.

Inner product on C[a,b] is <f,g> =

Inner product on M, , is <A> B> =

Inner product on Pn is <pq> = , Where

and

Example 10: Consider the following inner product defined on R":

u=(0,-6), v=(-11),and {u,v)=uv, +2u,v,

a. Find (u,v)
b. Find ||ul
c. Find |v|

d. Find d(u,v)
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Example 11: Consider the following inner product defined:
(f.8)=] f(x)g(x)x, f(x)=-x, g(x)=x*—x+2
a. Find (f,g)

b. Find | /]
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c. Find ||g||

d. Find d(/.g)
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THEOREM 4.8

Let wand v be vectors in an inner product space V.

Cauchy-Schwarz Inequality:

Triangle Inequality:

Pythagorean Theorem: wand v are orthogonal if and only if

0 1 1 1
Example 12: Verify the triangle inequality for 4 = { }, B= { }, and

<A, B> = a11b11 + a21b21 + alzblz + azzbzz .

DEFINITION OF ORTHOGONAL PROJECTION

Let wand v be vectors in an inner product space V', such that v # 0. Then the orthogonal projection of u
onto v is

I —
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THEOREM 5.9: ORTHOGONAL PROJECTION AND DISTANCE

Let wand v be vectors in an inner product space V', such that v# 0. Then

Example 13: Consider the vectors

u= (—1, —2) and v = (4, 2) . Use the Euclidean inner product to find the following:

a. proj.u

b. proj,v

c. Sketch the graph of both proj u and proj,v.

v
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4.2: ORTHONORMAL BASES: GRAM-SCHMIDT PROCESS

Learning Objectives:

1. Show that a set of vectors is orthogonal and forms an orthonormal basis, and represent a vector
relative to an orthonormal basis
2. Apply the Gram-Schmidt orthonormalization process

Consider the standard basis for R3, which is

This set is the standard basis because it has useful characteristics such as...The three vectors in the basis are

, and they are each

DEFINITIONS OF ORTHOGONAL AND ORTHONORMAL SETS

A set S of a vector space V is called orthogonal when every pair of vectors in .S is orthogonal. If, in addition,
each vector in the set is a unit vector, then S is called

.For §' = {Vl, Vyeens Vn}, this definition has the following form.
ORTHOGONAL ORTHONORMAL

If isa ,then itis an basis or an
basis, respectively.

THEOREM 4.10: ORTHOGONAL SETS ARE LINEARLY INDEPENDENT

If S = {Vl, Ve Vn} is an orthogonal set of vectors in an inner product space V', then

S' is linearly independent.

Proof:
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THEOREM 4.10: COROLLARY

If V' is an inner product space of dimension 1, then any orthogonal set of n nonzero vectors is a basis for V.

Example 1: Consider the following setin R*.

(o) 000y )

0,0 0,0,1,0),(0,1,0,0
00200 00.00).(010.0) [ -0 0,05

a. Determine whether the set of vectors is orthogonal.

b. If the setis orthogonal, then determine whether it is also orthonormal.

c. Determine whether the set is a basis for R".
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CREATED BY SHANNON MARTIN MYERS 159



THEOREM 4.11: COORDINATES RELATIVE TO AN ORTHONORMAL BASIS

If B= {VI’VZ’“"Vn} is an orthonormal basis for an inner product space V', then the coordinate

representation of a vector w relativeto B is

Proof:
The coordinates of relative to the basis are called the

coefficients of relative to . The corresponding coordinate matrix of
relative to is

Example 2: Show that the set of vectors {(2, —5),(10,4)} in R’ is orthogonal and normalize the set to

produce an orthonormal set.
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Example 3: Find the coordinate matrix of x =(-3,4) relative to the orthonormal basis

B= {[ﬁ,ﬁJ[_ﬁ’ﬁJ} in R?. Use the dot product as the inner product.
5 5 5 5

THEOREM 4.12: GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

Let B={v,,V,,..., Vv, } be a basis for an inner product V" .

let B'={w ,w,,..,w,}, where W,is given by

W, =V
_ _<V2’W1>
Wz_Vz <W1,W1> 1
W —v _<V39W1>W _<V39W2>
o <W1’W1> 1 <w2,w2>
wn:Vn_<vn’W1>Wl_<vn’W2> Wz_"'_ <Vn’wn71> Wn_l
<W1,W1> <W29W2> <Wn719wn71

W, " . .
Let u, = H . Then the set B" = {ul,uz,...,un} is an orthonormal basis for . Moreover,
wi

span{v,,v,,...v, } =span{u,u,,...u, } for k=1,2,...,n,
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Example 4: Apply the Gram-Schmidt orthonormalization process to transform the basis

B = {(1, 0, 0) , (1, 1, 1) , (1, 1, —1)} for a subspace in R’ into an orthonormal basis. Use the Euclidean inner

product on R’ and use the vectors in the order they are given.
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4.3: MATHEMATICAL MODELS AND LEAST SQUARES ANALYSIS

Learning Objectives:
1. When you are done with your homework you should be able to...

2. Define the least squares problem
3. Find the orthogonal complement of a subspace and the projection of a vector onto a subspace
4. Find the four fundamental subspaces of a matrix
5. Solve a least squares problem
6. Use least squares for mathematical modeling
In this section we will study systems of linear equations and learn how to find the
of such a system.
LEAST SQUARES PROBLEM
Given an m x n matrix 4 and avector b in R™, the problem is to
find in R™ such that is

DEFINITION OF ORTHOGONAL SUBSPACES

The subspaces S, and S, of R” are orthogonal when forall v, in S; and v, in S,.

Example 1: Are the following subspaces orthogonal?

0|1 0
S, =span<| =1,/ 0 |+ and S, =spanq| 1
111]0 1
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DEFINITION OF ORTHOGONAL COMPLEMENT

If S is a subspace of R”, then the orthogonal complement of S is the set

What'’s the orthogonal complement of {0} in R"?

What’s the orthogonal complement of R" ?

DEFINITION OF DIRECT SUM

Let Sl and Sz be two subspaces of R" . If each vector can be uniquely written as the
sum of a vector from and a vector from , , then is the
direct sum of and , and you can write

Example 2: Find the orthogonal complement S*, and find the direct sum S@® S*.
0

1
S =span

1
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CREATED BY SHANNON MARTIN MYERS 165




THEOREM 4.13: PROPERTIES OF ORTHOGONAL SUBSPACES

Let S be a subspace of R”, Then the following properties are true.
1.

2.

3.

THEOREM 4.14: PROJECTION ONTO A SUBSPACE

If {ul,uz,...,ut} is an orthonormal basis for the subspace S of R”,and veR" , then

Example 3: Find the projection of the vector v onto the subspace S .

— —_ - = - = — —

—1]]0]]0 1
211010 1

S =span , , V=
Of(|1[]O]|]"’ 1
L O0J[0][1] 1

THEOREM 4.15: ORTHOGONAL PROJECTION AND DISTANCE

Let .S be a subspace of R”andlet ve R" . Then, forall u € S, u = proj,v,
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FUNDAMENTAL SUBSPACES OF A MATRIX

Recall that if 4 isan m xn matrix, then the column space of 4 isa of consisting
of all vectors of the form , . The four fundamental subspaces of the matrix 4 are defined as
follows.

= nullspace of 4 = nullspace of A"

= column space of 4 = column space of A"

Example 4: Find bases for the four fundamental subspaces of the matrix

0 -1 1
A=[1 2 0|
111
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THEOREM 4.16: FUNDAMENTAL SUBSPACES OF A MATRIX

If Aisanm xn matrix, then

and are orthogonal subspaces of

and are orthogonal subspaces of

SOLVING THE LEAST SQUARES PROBLEM
Recall that we are attempting to find a vector x that minimizes

where A isan mxn matrix and b is a vectorin R™. Let S be the column space

of A: . Assume that b is notin S, because otherwise the

system Ax =b would be . We are looking for a

vector in that is as close as possibleto . This desired vector is

the of onto . So,

and = is orthogonal to . However,
this implies that isin , Which equals . So, isin
the of

The solution of the least squares problem comes down to solving the

. These equations are called the

problem

linear system of equations

equations of the least squares
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Example 5: Find the least squares solution of the system Ax=b.
I -1 1 2

A= b=

1
0
1

Ob—‘p—a

1 1
1| 0
1 2
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Example 6: The table shows the numbers of doctoral degrees y (in thousands) awarded in the United
States from 2005 through 2008. Find the least squares regression line for the data. Then use the model to
predict the number of degrees awarded in 2015. Let t represent the year, with t = 5 corresponding to
2005. (Source: U.S. National Center for Education Statistics)

Year 2005 2006 2007 2008

Doctoral Degrees, y | 52.6 56.1 60.6 63.7

CREATED BY SHANNON MARTIN MYERS 170



4.4: EIGENVALUES AND EIGENVECTORS, AND DIAGONALIZING MATRICES

Learning Objectives:

1. Verify eigenvalues and corresponding eigenvectors

2. Find eigenvectors and corresponding eigenspaces

3. Use the characteristic equation to find eigenvalues and eigenvectors, and find the eigenvalues and
eigenvectors of a triangular matrix

4. Find the eigenvalues and eigenvectors of a linear transformation

THE EIGENVALUE PROBLEM
One of the most important problems in linear algebra is the eigenvalue problem. When A isannxn, do

nonzero vectors X in R" exist such that 4Ax is a multiple of x ? The scalar, denoted by

( ), is called an of the matrix A , and the nonzero vector X is called an

of A correspondingto A .

DEFINITIONS OF EIGENVALUE AND EIGENVECTOR

Let A be an nxn matrix. The scalar is called an of A when thereis a

vector X such that . The vector X is called an of A

corresponding to A .

*Note that an eigenvector cannot be . Why not?

Example 1: Determine whether x is an eigenvector of A .

-3 10
A=

a. x=(-8,4) b. x=(5,-3)
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THEOREM 4.17: EIGENVECTORS OF 4 FORM A SUBSPACE

If A isan nxn matrix with an eigenvalue A, then the set of all eigenvectors of 4, together with the zero
vector

is a subspace of R" . This subspace is called the of 4.

Proof:

THEOREM 4.18: EIGENVALUES AND EIGENVECTORS OF A MATRIX

Let A be an nxn matrix.
1. An eigenvalue of A isascalar A such that

2. The eigenvectors of A correspondingto A are the solutions of

* The equation is called the of

A . When expanded to polynomial form, the polynomial is called the

of A . This definition tells you that the of an 1 X 1 matrix

A correspond to the of the characteristic polynomial of A4 .
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Example 2: Find (a) the characteristic equation and (b) the eigenvalues (and corresponding eigenvectors)
of the matrix.

3 21
A=|0 0 2
0 2 0
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THEOREM 4.19: EIGENVALUES OF TRIANGULAR MATRICES

If Aisan nxn triangular matrix, then its eigenvalues are the entries on its main

Example 3: Find the eigenvalues of the triangular matrix.

-5 0 0
3 7 0
4 -2 3

EIGENVALUES AND EIGENVECTORS OF LINEAR TRANSFORMATIONS

A number A is called an of a linear transformation when thereis a

vector such that . The vector X is called an

of T corresponding to A, and the set of all eigenvectors of A (with the zero vector) is called the

of 1.

Example 4: Consider the linear transformation 7 : R” — R"whose matrix A relative to the standard
base is given. Find (a) the eigenvalues of A4, (b) a basis for each of the corresponding eigenspaces, and

(c) the matrix A" for T relative to the basis B', where B’ is made up of the basis vectors found in part
b).

|3 4]
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4.5: DIAGONALIZATION

Learning Objectives:
1. Find the eigenvectors of similar matrices, determine whether a matrix A4 is diagonalizable, and find a matrix P
such that P~' AP is diagonal
2. Find, for a linear transformation 7 :V — V', a basis B for V such that the matrix for 7 relative to B

is diagonal

DEFINITION OF A DIAGONALIZABLE MATRIX

An nxn matrix A is diagonalizable when A is similar to a diagonal matrix. Thatis, 4 is diagonalizable

when there exists an invertible matrix such that is a diagonal matrix.

THEOREM 4.20: SIMILAR MATRICES HAVE THE SAME EIGENVALUES

If A and B are similar nxn matrices, then the have the same

Proof:
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Example 1: (a) verify that A is diagonalizable by computing P~' 4P, and (b) use the result of part (a)
and Theorem 4.20 to find the eigenvalues of 4 .

L

THEOREM 4.21: CONDITION FOR DIAGONALIZATION

An nxn matrix A is diagonalizable if and only if it has »
eigenvectors.

Proof:
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Example 2: For the matrix A, find, if possible, a nonsingular matrix P suchthat P'APis diagonal.
Verify P' AP is a diagonal matrix with the eigenvalues on the main diagonal.

4 0 O

A=12 2 0
0 2 2
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STEPS FOR DIAGONALIZING AN nxn SQUARE MATRIX

Let A be an nxn matrix.
1. Find n linearly independent eigenvectors for A (if possible) with

corresponding eigenvalues . If nlinearly independent eigenvectors do not

exist, then A4 is not diagonalizable.
2. Let P bethe nxn matrix whose columns consist of these eigenvectors. That is,

. The diagonal matrix will have the eigenvalues

on its main (and elsewhere). Note that

the order of the eigenvectors used to form P will determine the order in which the eigenvalues

appear on the main of

THEOREM 4.22: SUFFICIENT CONDITION FOR DIAGONALIZATION

If an nxnmatrix A has eigenvalues, then the corresponding eigenvectors are

and 4 is

Proof:
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Example 3: Find the eigenvalues of the matrix and determine whether there is a sufficient number to
guarantee that the matrix is diagonalizable.

;)

Example 4: Find a basis B for the domain of 7" such that the matrix for 7" relative to B is diagonal.
T:R° >R’ :T(x,y,z) = (—2x+2y—3z,2x+y—6z,—x—2y)

CREATED BY SHANNON MARTIN MYERS 179



. ________________________________________________________________________________________________________|
CREATED BY SHANNON MARTIN MYERS 180



4.5: SYMMETRIC MATRICES AND ORTHOGONAL DIAGONALIZATION

Learning Objectives:

1. Recognize, and apply properties of, symmetric matrices
2. Recognize, and apply properties of, orthogonal matrices
3. Find an orthogonal matrix P that orthogonally diagonalizes a symmetric matrix A4

SYMMETRIC MATRICES

Symmetric matrices arise more often in than any other major class of matrices.

The theory depends on both and . For

most matrices, you need to go through most of the diagonalization to ascertain whether a

matrix is . We learned about one exception, a matrix,
which has entries on the main . Another type of matrix which
is guaranteed to be isa matrix.
DEFINITION OF SYMMETRIC MATRIX
A square matrix A4 is when it is equal to its
Example 1: Determine which of the matrices below are symmetric.
6 5 4 1 2 3 4]
-2 5 3 2 1 2 7 1 0
1 ’ ’ 1 2 ’ 7
> 4 0 -1 3
_4 0O 2 5
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Example 2: Using the diagonalization process, determine if A is diagonalizable. If so, diagonalize the

matrix 4 .

R

. ________________________________________________________________________________________________________|
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THEOREM 4.23: PROPERTIES OF SYMMETRIC MATRICES

If A isan nxn symmetric matrix, then the following properties are true.

1. Ais

2. All of A are

3. If Aisan of A with multiplicity ___, then
___has____linearly eigenvectors. That is, the

of A has dimension

Proof of Property 1 (for a 2 x 2 symmetric matrix):

Example 3: Prove that the symmetric matrix is diagonalizable.

a a a

A=|la a a
a a a
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Example 4: Find the eigenvalues of the symmetric matrix. For each eigenvalue, find the dimension of the
corresponding eigenspace.

2 -1 -1
A=|-1 2 -1
-1 -1 2
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DEFINITION OF AN ORTHOGONAL MATRIX

A square matrix P is when it is and when

THEOREM 4.24: PROPERTY OF ORTHOGONAL MATRICES

An nxn matrix P is orthogonal if and only if its vectors form an

set.

Example 5: Determine whether the matrix is orthogonal. If the matrix is orthogonal, then show that the
column vectors of the matrix form an orthonormal set.

4y 3
5 5
A= 0 1 0
39 4
L S 5]

CREATED BY SHANNON MARTIN MYERS 185



THEOREM 4.25: PROPERTY OF SYMMETRIC MATRICES

Let A bean nxn symmetric matrix. If ﬂq and 12 are eigenvalues of A , then their

corresponding X, andXx, are

THEOREM 4.26: FUNDAMENTAL THEOREM OF SYMMETRIC MATRICES

Let A be an nxn matrix. Then A is and
has eigenvalues if and only if A is
Proof:

STEPS FOR DIAGONALIZING A SYMMETRIC MATRIX

Let A bean nxn symmetric matrix.

1. Findall of A and determine the of each.
2. For eigenvalue of multiplicity  ,find a eigenvector. That is, find any
and then it.
3. For eigenvalue of multiplicity , find a set of
eigenvectors. If this set is not , apply the
process.
4. The results of steps 2 and 3 produce an set of eigenvectors. Use
these eigenvectors to form the of . The matrix
will be . The main entriesof _ are the of
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CREATED BY SHANNON MARTIN MYERS 186




Example 5: Find a matrix P such that P" AP orthogonally diagonalizes A4. Verify that P AP gives the
proper diagonal form.

0 1 1
A=1 0 1
I 00

Example 6: Prove that if a symmetric matrix 4 has only one eigenvalue A4, then 4= A1 .

. ________________________________________________________________________________________________________|
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4.6: APPLICATIONS OF EIGENVALUES AND EIGENVECTORS

Learning Objectives:

1. Find the matrix of a quadratic form and use the Principal Axes Theorem to perform a rotation of axes
for a conic and a quadric

QUADRATIC FORMS
Every conic section in the xy-plane can be written as:

If the equation of the conic has no xy-term ( ), then the axes of the graphs are parallel to the
coordinate axes. For second-degree equations that have an xy-term, it is helpful to first perform a

a—c¢

of axes that eliminates the xy-term. The required rotation angle is cot26 = . With

. . . 2 . .
this rotation, the standard basis for R~ is rotated to form the new basis

/’ \\

4 \
/ \
! \

[
A\ %
\\ A

A
v
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Example 1: Find the coordinates of a point (x,y)in R’relative to the basis

B = {(cos 0,sin 8),(—sin 8, cos 6’)} .

ROTATION OF AXES
The general second-degree equation ax’ +bxy +cy’ +dx+ey + f =0 can be written in the form

a'(x')2 + c’(y')2 +dX"+e'y'+ f' =0 by rotating the coordinate axes counterclockwise through the angle
o , Where 0 is defined by cot26 = %. The coefficients of the new equation are obtained from the

substitutions x = x'cos@— y'sin@ and y = x'sin@+ y'cosd.
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Example 2: Perform a rotation of axes to eliminate the xy-terms in
5x° —6xy+5y° + 14/2x— 2\/5)/ +18 = 0. Sketch the graph of the resulting equation.

A
v
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and can be used to solve the rotation of axes

problem. It turns out that the coefficients a’ and ¢’ are eigenvalues of the matrix

The expression is called the form associated with the
guadratic equation and the matrix _____is called the of the

form. Note that is . Moreover, ___ will be if and
only if its corresponding quadraticformhasno__ term.

Example 3: Find the matrix of quadratic form associated with each quadratic equation.

a. x’+4y°+4=0

b. 5x’—6xy+5)> +14/2x - 22y +18=0

Now, let’s check out how to use the matrix of quadratic form to perform a rotation of axes.

x
Let X = [ } . Then the quadratic expression ax’ +bxy + cy2 +dx+ey+ f can be written in matrix form as
y
follows:
If , then no is necessary. But if ,then because ___is
symmetric, you may conclude that there exists an matrix such that

is diagonal. So, if you let
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then it follows that , and

The choice of _ must be made with care. Since ____is orthogonal, its determinant will be Jf P
is chosen so that |P| =1, then P will be of the form

where 6 gives the angle of rotation of the conic measured from the x-axis to the positive x’-axis.

PRINCIPAL AXES THEOREM

For a conic whose equation is ax” +bxy +cy” +dx+ey + f =0, the rotation given by

eliminates the xy-term when P is an orthogonal matrix, with |P| =1, that diagonalizes 4. That is

where A, and A, are eigenvalues of A . The equation of the rotated conic is given by

Example 4: Use the Principal Axes Theorem to perform a rotation of axes to eliminate the xy-term in the
quadratic equation. Identify the resulting rotated conic and give its equation in the new coordinate
system.

5x% —6xy+5y° +14/2x = 2/2y+18 =0
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