# **MATH 270/GRACEY**

# DEFINITIONS AND THEOREMS TO MEMORIZE WORD FOR WORD FOR EXAM 2 PLEASE NOTE THAT YOU MUST KNOW ALL OTHER DEFINITIONS AND THEOREMS WELL ENOUGH TO USE THEM IN PROBLEMS AND PROOFS

# **DEFINITIONS**

#### **DEFINITION OF SUBSPACE OF A VECTOR SPACE**

A nonempty set W of a vector space V is called a **subspace** of V when W is a vector space under the operations of addition and scalar multiplication defined in V.

#### **DEFINITION OF SPANNING SET OF A VECTOR SPACE**

Let  $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_k\}$  be a subset of a vector space V. The set S is called a **spanning set** of V when *every* vector in V can be written as a linear combination of vectors in S.

#### **DEFINITION OF LINEAR DEPENDENCE AND LINEAR INDEPENDENCE**

A set of vectors  $S = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_k\}$  in a vector space V is called **linearly independent** when the vector equation

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + \dots + c_k\mathbf{v}_k = \mathbf{0}$$

has only the trivial solution

$$c_1 = 0$$
,  $c_2 = 0$ ,  $c_3 = 0$ ,...,  $c_k = 0$ .

If there are also nontrivial solutions, then S is called **linearly dependent**.

#### **THEOREMS**

### **THEOREM 4.11: NUMBER OF VECTORS IN A BASIS**

If a vector space V has one basis with n vectors, then every basis for V has n vectors.

# THEOREM 4.21: TRANSITION MATRIX FROM $\,B\,$ TO $\,B'\,$

Let  $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$  and  $B' = \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \dots, \mathbf{u}_n\}$  be two bases for  $R^n$ . Then the transition matrix  $P^{-1}$  from B to B' can be found by using Gauss-Jordan elimination on the  $n \times 2n$  matrix  $\begin{bmatrix} B' & B \end{bmatrix}$ , as follows.

$$\begin{bmatrix} B' & B \end{bmatrix} \longrightarrow \begin{bmatrix} I_n & P^{-1} \end{bmatrix}$$