When you are done with your homework you should be able to...
π Find the derivative of a function using the product rule
π Find the derivative of a function using the quotient rule
π Find the derivative of a trigonometric function
π Find a higher-order derivative of a function
Warm-up: Find the derivative of the following functions. Simplify your result to a single rational expression with positive exponents.

1. $f(x)=\frac{3 x^{2}-x+2}{\sqrt{x}}$
2. $g(x)=(5 x-3)^{2}$
3. $f(x)=\cos \left(x-\frac{\pi}{4}\right)$

THEOREM: THE PRODUCT RULE

The product of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f g$ is the derivative of the first function times the second function, plus the first function times the derivative of the second function.

$$
\frac{d}{d x}[f(x) g(x)]=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

This rule extends to cover products of more than two factors. For example the derivative of the product of functions fghk is

$$
\frac{d}{d x}[f g h k]=f^{\prime}(x) g(x) h(x) k(x)+f(x) g^{\prime}(x) h(x) k(x)+f(x) g(x) h^{\prime}(x) k(x)+f(x) g(x) h(x) k^{\prime}(x)
$$

Example 1: Find the derivative of the following functions. Simplify your result to a single rational expression with positive exponents.
a. $g(x)=x \cos x$
b. $h(t)=(3-\sqrt{t})^{2}$
c. $f(x)=\left(x^{3}-x\right)\left(x^{2}+2\right)\left(x^{2}+x-1\right)$

THEOREM: THE QUOTIENT RULE

The quotient of two differentiable functions f and g is itself differentiable at all values of x for which $g(x) \neq 0$. Moreover, the derivative of f / g is the derivative of the numerator times the denominator, minus the numerator times the derivative of the denominator, all divided by the square of the denominator.

$$
\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}
$$

Example 2: Find the derivative of the following functions. Simplify your result to a single rational expression with positive exponents.
a. $g(x)=x^{4}\left(1-\frac{2}{x+1}\right)$
b. $h(s)=\frac{s}{\sqrt{s}-1}$
C. $f(x)=\tan x$

THEOREM: DERIVATIVES OF TRIGONOMETRIC FUNCTIONS
$\frac{d}{d x}[\tan x]=\sec ^{2} x$

$$
\frac{d}{d x}[\cot x]=-\csc ^{2} x
$$

$$
\frac{d}{d x}[\sec x]=\sec x \tan x
$$

$$
\frac{d}{d x}[\csc x]=-\csc x \cot x
$$

Example 3: Find the derivative of the trigonometric functions.
a. $g(x)=-2 \csc x$
b. $h(t)=\cot ^{2} t$
c. $r(s)=\frac{\sec s}{s}$

HIGHER ORDER DERIVATIVES

Recall that you can obtain \qquad by differentiating a position function.
You can obtain an \qquad function by differentiating a velocity function. Or, you could also think about the acceleration function as the
\qquad derivative of the \qquad function.

Example 4: An automobile's velocity starting from rest is $v(t)=\frac{100 t}{2 t+15}$ where v is measured in feet per second. Find the acceleration at
a. 5 seconds
b. 10 seconds
c. 20 seconds

NOTATION FOR HIGHER-ORDER DERIVATIVES

First derivative					
Second derivative					
Third derivative					
Fourth derivative					
nth derivative					

Example 5: Find the given higher-order derivative.
a. $f^{\prime \prime}(x)=2-\frac{2}{x}, f^{\prime \prime \prime}(x)$
b. $f^{(4)}(x)=2 x+1, f^{(6)}(x)$

