When you are done with your homework you should be able to...
π Find the de rivative of a function using the constant rule
π Find the derivative of a function using the power rule
π Find the derivative of a function using the constant multiple rule
π Find the de rivative of a function using the sum and difference rules π Find the de rivative of the sine function and of the cosine function π Ulse de rivatives to find rates of change

Warm-up: Find the following derivatives using the limit definition of the derivative.

1. $f(x)=2$
2. $f(x)=x^{2}$
3. $f(x)=\cos x$

The de rivative of a constant function is zero. That is, if c is a real number, then

$$
\frac{d}{d x}[c]=0
$$

$\mathcal{H m m m} .$. isn't this theorem the equivalent of saying that the of a line is zero?

Example 1: Find the derivative of the function $g(x)=6$.
$\mathcal{T H E O R E M}: \mathcal{T H E}$ PO WE RULE
If n is a rational number, then the function $f(x)=x^{n}$ is differentiable and

$$
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}
$$

For f to be differentiable at $x=0$, n must be a number such that x^{n-1} is defined on an interval containing zero.

Example 2: Find the following de rivatives.
a. $\quad f(x)=x^{5}$
6. $\quad f(x)=x^{1 / 2}$
c. $f(x)=x^{-5 / 3}$
$\mathcal{T H E O}$ REM: $\mathcal{T H E} \operatorname{CONSTANT}$ MULTIPLE RULE
If f is a differentiable function and c is a real number, then of is also differentiable and

$$
\frac{d}{d x}[c f(x)]=c f^{\prime}(x)
$$

Example 3: Find the slope of the graph of $f(x)=2 x^{3}$ at
a. $x=2$
6. $x=-6$
c. $x=0$
$\mathcal{T H E O}$ REM: $\mathcal{T H E} S \mathcal{U M} \mathcal{A N D} \mathcal{D I} \operatorname{FFERENCE}$ RULES
The sum (or difference) of two differentiable functions f and g is itself differentiable. Moreover, the derivative of $f+g$ (or $f-g$) is the sum (or difference) of the derivatives of f and g.

$$
\begin{gathered}
\frac{d}{d x}[f(x)+g(x)]=f^{\prime}(x)+g^{\prime}(x) \\
\frac{d}{d x}[f(x)-g(x)]=f^{\prime}(x)-g^{\prime}(x)
\end{gathered}
$$

Example 4: Find the equation of the line tangent to the graph of $f(x)=x-\sqrt{x}$ at $\chi=4$.

$$
\frac{d}{d x}[\sin x]=\cos x \quad \frac{d}{d x}[\cos x]=-\sin x
$$

Example 5: Find the derivative of the following functions:
a. $f(x)=\frac{\sin x}{6}$
6. $r(\theta)=5 \theta-3 \cos \theta$

$\underline{R \mathcal{A T E S}}$ Of $\mathcal{F} \mathcal{H A N} \mathcal{G E}$

We have seen fow the derivative is used to determine \qquad . The
derivative may also be used to determine the \qquad of of one with respect to another.
\mathcal{A} common use for rate of change is to describe the motion of an object moving in a straight line. In such problems, it is customary to use either a fiorizontal or a verticalline with a designated origin to represent the line of motion. On such lines, movement to the \qquad or \qquad is considered to be in the positive direction, and movement to the left or downwards is considered to be in the \qquad direction.
$\mathcal{T H E}$ POSITION FUNCCTION is denoted by S and gives the position (relative to the origin) of an object as a function of time. If, over a period of time Δt, the object changes its position by $\Delta s=s(t+\Delta t)-s(t)$, then, by the familiar formula

$$
\text { rate }=\frac{\text { distance }}{\text { time }}
$$

the average velocity is
$\frac{\text { change in distance }}{\text { chang in time }}=\frac{\Delta s}{\Delta t}$

Example 6: \mathfrak{A} 6all is thrown straight down from the top of a 220-foot building with an initial velocity of 22 feet per second. The position function for free. falling objects measured infeet is $s(t)=-16 t^{2}+v_{0} t+s_{0}$.

What is its velocity after 3 seconds?

What is its velocity after falling 108 feet?

