When you are done with your homework you should be able to... π Find the slope of the tangent line to a curve at a point π Use the limit definition to find the derivative of a function π Understand the relationship between differentiability and continuity

Warm-up: Find the following limits.

1. $\lim _{x \rightarrow 0} \frac{3 x}{x^{2}+2 x}$
2. $\lim _{x \rightarrow 0} \frac{\frac{1}{x+4}-\frac{1}{4}}{x}$
3. $\lim _{\Delta x \rightarrow 0} \frac{(x+\Delta x)^{2}-x^{2}}{\Delta x}$

DEFINITION OF TANGENT LINE WITH SLOPE m

If f is defined on an open interval containing c, and if the limit

$$
\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=m
$$

exists, then the line passing through $(c, f(c))$ with slope m is the tangent line to the graph of f at the $\operatorname{point}(c, f(c))$.
**The slope of the tangent line to the graph of f at the point $(c, f(c))$ is also called the slope of the graph of f at $x=c$.

Example 1: Find the slope of the graph of $f(x)=6-x^{2}$ at the point $(1,5)$.

DEFINITION FOR VERTICAL TANGENT LINES

If f is continuous at c and

$$
\lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=\infty \text { or } \lim _{\Delta x \rightarrow 0} \frac{f(c+\Delta x)-f(c)}{\Delta x}=-\infty
$$

the vertical line $x=c$ passing through the point $(c, f(c))$ is a vertical tangent line to the graph of f.

DEFINITION OF THE DERIVATIVE OF A FUNCTION

The derivative of f at x is given by

$$
f^{\prime}(x)=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x)-f(x)}{\Delta x}
$$

provided the limit exists. For all x for which this limit exists, f^{\prime} is a function of x.

The process of finding the derivative of a function is called

A function is \qquad at x if its derivative exists at x and
is \qquad on an open interval (a, b) if it is differentiable at every point in the interval.

NOTATION FOR THE DERIVATIVE OF $y=f(x)$:

Example 2: Find the derivative of $f(x)=4-x^{3}$ using the limit process.

ALTERNATIVE LIMIT FORM OF THE DERIVATIVE

$$
f^{\prime}(c)=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}
$$

This form of the derivative requires that the one-sided limits

$$
\lim _{x \rightarrow c^{-}} \frac{f(x)-f(c)}{x-c} \text { and } \lim _{x \rightarrow c^{+}} \frac{f(x)-f(c)}{x-c} \text { exist and are equal. }
$$

Example 3: Is the function $f(x)=x^{2 / 3}$ differentiable at $x=0$?

THEOREM: DIFFERENTIABILITY IMPLIES CONTINUITY
If f is differentiable at $x=c$, then f is continuous at $x=c$.

