When you finish your home work you should be able to...

- Determine infinite limits from the left and from the right
- Find and sketch the vertical asymptotes of the graph of a function

Warm-up: Evaluate the following limits analytically

1. $\lim _{x \rightarrow 0} \frac{[1 /(x+4)-1 / 4]}{x}$
2. $\lim _{t \rightarrow 0} \frac{\sin 3 t}{2 t}$
3. $\lim _{\theta \rightarrow 0} \frac{\cos \theta \tan \theta}{\theta}$
$\mathcal{D E F} I \mathcal{N} I \mathcal{T} I O \mathcal{N} O \mathcal{F} I \mathcal{N F} I \mathcal{N} I \mathcal{T E} \mathcal{L} I \mathcal{M I} \mathcal{T} S$
Let f be a function that is defined at every real number in some open interval containing $c(e x c e p t$ possibly at c). The statement

$$
\lim _{x \rightarrow c} f(x)=\infty
$$

means that for each $M>0$ there exists a $\delta>0$, such that $f(x)>M$ whenever $0<|x-c|<\delta$. Similarly, the statement

$$
\lim _{x \rightarrow c} f(x)=-\infty
$$

means that for each $N<0$ there exists a $\delta>0$, such that $f(x)<N$ whenever $0<|x-c|<\delta$. To define the infinite limit from the left, replace $0<|x-c|<\delta$ by $c-\delta<x<c$. To define the infinite limit from the right, replace $0<|x-c|<\delta$ by $c<x<c+\delta$.

Example 1: Determine the infinite limit.

1. $\lim _{x \rightarrow-3^{-}} \frac{x}{x^{2}-9}$
2. $\lim _{x \rightarrow 3^{+}} \sec \frac{\pi x}{6}$
$\mathcal{D E F I N} I \mathcal{T} I O \mathcal{N} O \mathcal{F} V E R \mathcal{I} I C \mathcal{A L} \mathcal{A S} \mathcal{Y M P I O T E}$
If $f(x)$ approaches infinity or negative infinity as x approaches c from the right or the left, then the line $x=c$ is a vertical asymptote of the graph of f.

$\mathcal{T H E O}$ REM: VERI I CAL $\mathcal{A S}$ УMMPIO TES

Let f and g be continuous on an open interval containing $c . I f f(c) \neq 0, g(c)=0$, and there exists an open interval containing c such that $g(x) \neq 0$ for all $x \neq c$ in the interval, then the graph of the function given by

$$
h(x)=\frac{f(x)}{g(x)}
$$

has a vertical asymptote at $x=c$.
Example 2: Find the vertical asymptotes (if any) of the graph of the function.

1. $g(\theta)=\frac{\tan \theta}{\theta}$
2. $\quad h(x)=\frac{x^{2}-4}{x^{3}+2 x^{2}+x+2}$
$\mathcal{T H E O R E M}: \mathcal{R} O \mathcal{P E R I I E S}$ OF $I \mathcal{N} \mathcal{F} I \mathcal{N} I \mathcal{T E} L I \mathcal{M} I \mathcal{T S}$
Let 6 and L be realnumbers and let f and g be functions such that

$$
\lim _{x \rightarrow c} f(x)=\infty \quad \text { and } \quad \lim _{x \rightarrow c} g(x)=L
$$

1. Sum or difference: $\quad \lim _{x \rightarrow c}[f(x) \pm g(x)]=\infty$
2. Product:
$\lim _{x \rightarrow c}[f(x) g(x)]=\infty, \quad L>0$
$\lim _{x \rightarrow c}\left[\frac{g(x)}{f(x)}\right]=0$
Similar properties hold for one-sided limits and for functions for which the limit of $f(x)$ as x approaches c is $-\infty$.

Example 3: Let $\lim _{x \rightarrow c} f(x)=-\frac{2}{3}, \lim _{x \rightarrow c} g(x)=\infty$ and $\lim _{x \rightarrow c} h(x)=5$. Determine the following limits:

1. $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$
2. $\lim _{x \rightarrow c}[f(x)-g(x)]^{2}$
3. $\lim _{x \rightarrow c} \frac{[h(x) f(x)]}{3}$
