When you are done with your fome work you should be able to...
π Determine continuity at a point and continuity on an open interval
π Determine one-sided limits and continuity on a closed interval
π Ulse properties of continuity
π Understand and use the Intermediate Value The orem
$\mathcal{D E F} I \mathcal{N} I \mathcal{T} I O \mathcal{N} O \mathcal{F} \operatorname{CON} \mathcal{N} I \mathcal{N} \mathcal{U} I \mathcal{T} \mathcal{Y}$
$\mathcal{C O N} I \mathcal{N} \mathcal{N} I \mathcal{T} \mathcal{Y} \mathcal{A} \mathcal{A} \mathcal{P O} I \mathcal{N T}$: A function f is continuous at C if the following three conditions are met.

1. $f(c)$ is define d.
2. $\lim _{x \rightarrow c} f(x)_{\text {exists }}$.
3. $\lim _{x \rightarrow c} f(x)=f(c)$.
$\mathcal{C O} \mathcal{N} I \mathcal{N} \mathcal{L I I T \mathcal { Y }} O \mathcal{N} \mathcal{A N} O P E \mathcal{N} I \mathcal{N T E R V A L}:$
\mathcal{A} function is continuous on an open interval (\mathbf{a}, \mathbf{b}) if it is continuous at each point in the interval. A function that is continuous on the entire realline is everywhere continuous.
4. Draw the graph of the following functions with the given characteristics on the open intervalfrom a to 6 :
a. The function fis a removable
discontinuity at $x=0$
5. The function has a nonremovable discontinuity at $x=0$
$\mathcal{T H E O R E M}: \mathcal{T H E} \mathcal{E X} I S \mathcal{T E N} C \mathcal{E} O \mathcal{F} \mathcal{A} \mathcal{L I M I \mathcal { T }}$
Let f be a function and let c and \mathcal{L} be real numbers. The limit of $f(x)$ as χ approaches c is L if and only if

$$
\lim _{x \rightarrow c^{-}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{+}} f(x)=L .
$$

$\operatorname{CON} I \mathcal{N} \mathcal{N} I \mathcal{T} \mathcal{Y} O \mathcal{N} \mathcal{A} \mathcal{L} O S E D I \mathcal{N T E R V A L}$:

A function f is continuous on the closed interval $[\mathbf{a}, \mathbf{b}]$ if it is continuous on the open interval $(a, 6)$ and

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a) \quad \text { and } \quad \lim _{x \rightarrow b^{-}} f(x)=f(b) .
$$

The function f is continuous from the right at a and continuous from the left at .
2. Graph each function and use the definition of continuity to discuss the continuity of each function.
a. $f(x)=\frac{x^{2}-4}{x+2}$

$$
\text { 6. } g(x)=\tan x
$$

c.

$$
y= \begin{cases}|x|, & x \leq 2 \\ -x, & 2<x<4 \\ \frac{x^{2}}{4}, & x \geq 4\end{cases}
$$

If b is a realnumber and f and g are continuous at $X=C$ then the following functions are also continuous at c.

1. Scalar multiple:
bf
2. Sum or difference:
$f \pm g$
3. Product:
fg
4. Quotient:

$$
\frac{f}{g}, g(c) \neq 0
$$

The following types of functions are continuous at every point in the ir domains.

1. Polynomial functions:

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+x_{0}
$$

$$
r(x)=\frac{p(x)}{q(x)}, q(x) \neq 0
$$

3. Radic al functions:
$f(x)=\sqrt[n]{x}$
4. Trigonometric functions: $\sin x, \cos x, \tan x, \cot x, \sec x, \csc x$
5. Explain why the following functions are continuous at every point in the ir domains.
a. $f(x)=\sqrt{x}-\tan x$
6. $f(x)=\frac{5-x}{x \sin x}$

Properties used:

If g is continuous at c and f is continuous at $g(c)$
then the composite function $(f \circ g)(x)=f(g(x))$
is continuous at c.
4. Explain why the following functions are continuous at every point in the ir domains.
a. $f(x)=\sqrt[3]{x^{2}-8 x+1}$

Properties used:
6. $g(x)=\tan \left(2 x^{2}\right)$

Properties used:

If f is continuous on the closed interval $[a, b]$ and K is any number between $f(a)$ and $f(b)$, thenthere is at least one numberc in $[a, b]$ such that $f(c)=k$.
5. Consider the function $f(x)=\cos 2 x$ on the closed interval $[0, \pi]$.
a. Sketch the graph of f by hand.

b. State the reason why we can apply the intermediate value theorem (IVT).
c. Use the IVT to find c such that $f(c)=\frac{1}{2}$.

