When you finisf your home work you should be able to...

- Estimate a limit using a numericalor grapfical approach.
- Learn different ways that a limit canfail to exist.
- Study and use a formal definition of limit.

Consider the function

$$
f(x)=\frac{x^{3}-8}{x-2}
$$

Let's grapf the function:

\mathcal{N} owlet's examine the limit of the function as xapproaches 2 using a table. This is written as $\lim _{x \rightarrow 2} f(x)$, or specifically $\lim _{x \rightarrow 2} \frac{x^{3}-8}{x-2}$ for our function.

\boldsymbol{X}	1.9	1.99	1.999	2.001	2.01	2.1
$f(x)$						

 $\mathcal{L I S I T}$

1. $f(x)$ approaches a different number from the right side of c than it approaches from the left side.
2. $f(x)$ increases or decreases without bound as x approaches c.
3. $f(x)$ oscillates between two fixed values as x approaches c.

Complete the table and use the result to estimate the limit.

1. $\lim _{x \rightarrow-3} \frac{\sqrt{1-x}-2}{x+3}$

\boldsymbol{X}	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9
$f(x)$						

2. $\lim _{x \rightarrow 0} \cos \frac{1}{x}$

x	$1 / \pi$	$1 / 2 \pi$	$1 / 3 \pi$	$1 / 4 \pi$	$1 / 5 \pi$	$1 / 6 \pi$
$f(x)$						

3. Consider the function

$$
f(x)=\frac{x}{x-3}
$$

Let's graph the function:

\boldsymbol{X}	2.9	2.99	2.999	3.001	3.01	3.1
$f(x)$						

What observations would you make about the befiavior of this function at the asymptote?
4. Consider the function

$$
g(x)=\left\{\begin{array}{l}
\sin x, \quad x \leq 0 \\
1-\cos x, \quad 0 \leq x \leq \pi \\
\cos x, \quad x>\pi
\end{array}\right.
$$

Let's graph the function:

Nowlet's identify the values of c for which the $\lim _{x \rightarrow c} g(x)$ exists.
$\mathcal{D E F I N} I \mathcal{T} I O \mathcal{N} O \mathcal{F} L I \mathcal{M I T}$
Let f be a function defined on an openintervalcontaining c (except possibly at c) and let LL be a real number. The statement

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that for each small positive number epsilon, denoted \mathcal{E}, there exists a small positive number delta, denoted $\boldsymbol{\delta}$, such that if

$$
0<|x-c|<\delta, \text { then }|f(x)-L|<\varepsilon
$$

5. Find the limit L. Then find $\delta>0$ such that $|f(x)-L|<0.01$ whenever $|x-c|<\delta$.

$$
\lim _{x \rightarrow 5}\left(x^{2}+4\right)
$$

