When you finish your homework you should be able to...

- Estimate a limit using a numerical or graphical approach.
- Learn different ways that a limit can fail to exist.
- Study and use a formal definition of limit.

Consider the function $f(x) = \frac{x^3 - 8}{x - 2}$

Let's graph the function:

Now let's examine the limit of the function as x approaches 2 using a table. This is

written as
$$\lim_{x \to 2} f(x)$$
, or specifically $\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$ for our function.

X	1.9	1.99	1.999	2.001	2.01	2.1
f(x)						

COMMON TYPES OF BEHAVIOR ASSOCIATED WITH NONEXISTENCE OF A LIMIT

- 1. f(x) approaches a different number from the right side of *c* than it approaches from the left side.
- 2. f(x) increases or decreases without bound as x approaches c.
- 3. f(x) oscillates between two fixed values as x approaches c.

Complete the table and use the result to estimate the limit.

1.
$$\lim_{x \to -3} \frac{\sqrt{1-x}-2}{x+3}$$

X	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9
f(x)						

2.
$$\lim_{x \to 0} \cos \frac{1}{x}$$

X	$\frac{1}{\pi}$	$\frac{1}{2\pi}$	$\frac{1}{3\pi}$	$\frac{1}{4\pi}$	$\frac{1}{5\pi}$	$\frac{1}{6\pi}$
f(x)						

MATH 150/GRACEY

CH. 1.2

3. Consider the function $f(x) = \frac{x}{x-3}$

Let's graph the function:

X	2.9	2.99	2.999	3.001	3.01	3.1
f(x)						

What observations would you make about the behavior of this function at the asymptote?

4. Consider the function
$$g(x) = \begin{cases} \sin x, & x \le 0\\ 1 - \cos x, & 0 \le x \le \pi\\ \cos x, & x > \pi \end{cases}$$

Let's graph the function:

Now let's identify the values of c for which the $\lim_{x\to c} g(x)$ exists.

Let f be a function defined on an open interval containing c (except possibly at c) and let L be a <u>real number</u>. The statement

$$\lim_{x \to c} f(x) = L$$

means that for each small positive number epsilon, denoted $\,arepsilon\,$, there exists a small positive number delta, denoted $\,\delta\,$, such that if

$$0 < |x-c| < \delta$$
, then $|f(x)-L| < \varepsilon$.

5. Find the limit *L*. Then find $\delta > 0$ such that |f(x) - L| < 0.01 whenever $|x - c| < \delta$.

$$\lim_{x \to 5} \left(x^2 + 4 \right)$$