The orem: The Fundamental Theorem of Calculus
If a function f is continuous on the closed interval $[a, b]$ and F is an antide rivative of f on the interval $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Guidelines for \mathcal{H} ing the Fundamental The orem of Calculus

1. Provided you can find an antide rivative of f, you now have a way to evaluate a definite integral without having to use the limit of a sum.
2. When applying the Fundamental The orem of Calculus, the following notation is convenient:

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =F(x)]_{a}^{b} \\
& =F(b)-F(a)
\end{aligned}
$$

3. It is not necessary to include a constant of integration C in the antide rivative because

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =F(x)+C]_{a}^{b} \\
& =[F(b)+C]-[F(a)+C] \\
& =F(b)-F(a)
\end{aligned}
$$

1. Evaluate the definite integral.

$$
\begin{aligned}
\int_{a}^{b} f(x) d x & =\left.\underbrace{F(x)}\right|_{a} ^{b} \\
& =F(b)-F(a)
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=6 \\
& F(x)=6 x \\
& a=-2 \\
& b=6
\end{aligned}
$$

$$
=6(6)-6(-2)
$$

$$
=48
$$

$$
\begin{aligned}
& f(x)=2 x^{2}+1 \\
& F(x)=\frac{2}{3} x^{3}+x \\
& a=1 \\
& b=6 \\
& \text { 6. } \int_{1}^{6}\left(2 x^{2}+1\right) d x=\left(\frac{2}{3} x^{3}+\left.x\right|_{1} ^{6}\right. \\
& =\left[\frac{2}{3}(6)^{3}+(6)\right]-\left[\frac{2}{3}(1)^{3}+(1)\right] \\
& =\left[\frac{2}{p_{1}} \cdot 32{ }^{72}+6\right]-\left[\frac{2}{3}+\frac{3}{3}\right] \\
& =150-\frac{5}{3} \\
& \text { c. } \int_{0}^{2}(2-t) \sqrt{t} d t=\int_{0}^{2}\left(2 t^{1 / 2}-t^{3 / 2}\right) d t \\
& =\left(\frac{2 t^{3 / 2}}{3 / 2}-\left.\frac{t^{5 / 2}}{5 / 2}\right|_{0} ^{2}\right. \\
& =\left|\frac{4}{3} t^{3 / 2}-\frac{2}{5} t^{5 / 2}\right|_{0}^{2} \\
& \left.=\left[\frac{4}{3} \sqrt{2^{3}}-\frac{2}{5} \sqrt{2^{5}}\right]-[0-0]\right]^{=}=\frac{\frac{4}{3} \cdot 2 \sqrt{2}-\frac{2}{5}}{}=\frac{40 \sqrt{2}-24 \sqrt{2}}{15} \\
& \text { d. } \int_{1}^{4}(2 v+5)^{3} d v \quad L=\frac{16}{15} \sqrt{2} \\
& (2 v+5)^{3}=1(2 v)^{3}(5)^{0}+3(2 v)^{2}(5)+3(2 v)^{1}(5)^{2}+1(2 v)^{0}(5)^{3} \\
& =8 v^{3}+60 v^{2}+150 v+125 \\
& \int(2 v+5)^{3} d v=\int_{1}^{4}\left(8 v^{3}+60 v^{2}+150 v+125\right) d v \\
& =8 \frac{v^{4}}{4}+60 \frac{v^{3}}{3}+150 \frac{v^{2}}{2}+\left.125 v\right|_{1} ^{4}
\end{aligned}
$$

$$
\begin{aligned}
& =2 v^{4}+20 v^{3}+75 v^{2}+\left.125 v\right|_{1} ^{4} \\
& =\left[2(4)^{4}+20(4)^{3}+75(4)^{2}+125(4)\right]-[2+20+75+125] \\
& =3492-222 \\
& =3270
\end{aligned}
$$

RATIONAL FUNCTIONS must be written as the sum/difference of functions (neg. exponents are ok)

$$
E x: \int \frac{5 x^{3}-x^{2}+2}{x^{2}} d x=\int\left(\int x_{\substack{\text { pour }}}^{5 x-1+2 x^{-2}}\right) d x
$$

Products of functions (not constant times afunction) must be multiplied out.

Trig. functions:
Identities \rightarrow try changing everything into sines and cosines Pythagorean Conjugates \rightarrow you generate a difference of squares situation so that you can change the denominator

$$
\begin{aligned}
& \text { from } 2 \text { terms to } 1 \text { term } \\
& \begin{aligned}
\text { Ex: } \int \frac{1}{1+\sin x} d x & =\int \frac{1}{(1+\sin x)(1-\sin x)} d x & \frac{1}{2+3} \stackrel{?}{=} \frac{1}{2}+\frac{1}{3} \\
& =\int \frac{1-\sin x}{1-\sin ^{2} x} d x & \frac{1}{5} \neq \frac{5}{6}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& =\int \frac{1-\sin x}{\cos ^{2} x} d x \\
& =\int \frac{1}{\cos ^{2} x} d x-\int \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} d x \\
& =\int \sec ^{2} x d x-\int \sec x \tan x d x \\
& =\tan x-\sec x+C
\end{aligned}
$$

Find the are a of the region bounded by the graphs of the $y=1+\sqrt[3]{x}, \quad x=0, \quad x=8, \quad y=0$.

$$
\begin{aligned}
& R=\int_{0}^{8}\left(1+x^{1 / 3}\right) d x \\
& R=\left(x+\left.\frac{3}{4} x^{4 / 3}\right|_{0} ^{8}\right. \\
& R=\left[8+\frac{3}{4}(\sqrt[3]{8})^{4}\right]-[0+0] \\
& R=8+\frac{3}{4} \cdot 4^{4} \rightarrow \text { Area }=20 \text { squints }
\end{aligned}
$$

Consider: $\int_{-\pi}^{\pi} \cos x d x$

$$
\begin{aligned}
& R_{1}=R_{4} \text { and } R_{2}=R_{3} \\
& \int_{-\pi}^{\pi} \cos x d x=2 \int_{0}^{\pi} \cos x d x
\end{aligned}
$$

$R_{\text {, and }} R_{4}$ will have negative results

$$
\begin{aligned}
\int_{-\pi}^{\pi} \cos x d x & =2 \int_{0}^{\pi} \cos x d x \\
& =\left.2 \sin x\right|_{0} ^{\pi} \\
& =2(0-0) \\
& =0
\end{aligned}
$$

What if we wanted to find the area?

$$
\begin{aligned}
& \left.A=2\left[\int_{0}^{\pi / 2} \cos x d x+\mid \int_{\pi / 2}^{\pi} \cos x d x\right]\right] \\
& A=2\left[\left.\sin x\right|_{0} ^{\pi / 2}+\left.|\sin x|\right|_{\pi / 2} ^{\pi}\right] \\
& A=2[(1-0)+|0-1|] \\
& A=2 \cdot 2 \\
& A=4 \text { sq. units }
\end{aligned}
$$

$$
\begin{array}{rl}
& \int_{\pi / 6}^{\pi / 3} \frac{(1)(1+\cos \theta)}{(1-\cos \theta)}(1+\cos \theta) \\
= & \int_{\pi / 6}^{\pi / 3} \frac{1+\cos \theta}{1-\cos ^{2} \theta} d \theta \\
= & \int_{\pi / 3}^{\pi / 6} \frac{1+\cos \theta}{\sin ^{2} \theta} d \theta \\
= & \int_{\pi / 3}^{\pi / 3} \frac{1}{\sin ^{2} \theta} d \theta+\int_{\pi / 3}^{\pi / 3} \frac{1}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta} d \theta \\
= & \int_{\pi / 3}^{\pi / 3}(\csc \theta \\
2 & d \theta+\int_{\pi / 6}^{\pi / 3} \csc \theta \cot \theta d \theta \\
= & -\left.\cot \theta\right|^{\pi / 3}-\left.\csc \cot \right|^{\pi / 3} \\
\pi / 6 \\
= & -\left(\frac{\cos \pi / 3}{\sin \pi / 3}-\frac{\cos \pi / 6}{\sin \pi / 6}\right) \\
- & \left(\frac{1}{\sin \pi / 3}-\frac{1}{\sin \pi / 6)}\right. \\
= & -\left(\frac{1 / 2}{\sqrt{3} / 4}-\frac{\sqrt{3} / 2}{1 / 2}\right)-\left(\frac{1}{\sqrt{3} / 2}-\frac{1}{1 / 2}\right) \\
= & -\frac{1}{\sqrt{3}}+\sqrt{3}-\frac{2}{\sqrt{3}}+2 \\
= & -\frac{3}{\sqrt{3}} \frac{\sqrt{3}}{\sqrt{3}}+\sqrt{3}+2 \\
= & -\sqrt{3}+\sqrt{3}+2 \\
= & 2 \\
2
\end{array}
$$

$\mathcal{T H E} \mathcal{M E A N} V \mathcal{A L U E} \mathcal{T H E O R E M}$ FOR $I \mathcal{N T E G R A L S}$
If f is continuous on the closed interval $[a, b]$, then there exists a number C in the closed interval $[a, b]$ such that

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

areaunder
curve area of rectangle
b \quad Definition of the Ave rage Value of a \mathcal{F} unction on an Interval
$\left.\int^{b} f(x) d x=(b-a) f(c)\right)^{I f} f$ is integrable on the closed interval $[a, b]$, then the a b average value of f on the interval is

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x=f(c)
$$

$$
\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

3. Find the value (s) of c guaranteed by the Mean Value Theorem for Integrals for the function $f(x)=\cos x, \quad\left[\begin{array}{c}-\frac{\pi}{3}, \frac{\pi}{3} \\ f(x)\end{array}\right]$
$\frac{\pi}{3}$

$$
\int_{0}^{\frac{\pi}{3}} \cos x d x=f(x)\left[\frac{\pi}{3}-\left(-\frac{\pi}{3}\right)\right]
$$

$-\frac{\pi}{3}$

$$
\begin{aligned}
& 2 \int_{0}^{\pi / 3} \cos x d x=\frac{2 \pi}{3} \cos x \\
& 2\left[\left.\sin x\right|_{0} ^{\pi / 3}=\frac{2 \pi}{3} \cos x\right.
\end{aligned}
$$

$$
\sin \frac{\pi}{3}-\sin 0=\frac{\pi}{3} \cos x
$$

$$
\frac{\sqrt{3}}{2}-0=\frac{\pi}{3} \cos x
$$

$$
0.83 \approx \frac{3 \sqrt{3}}{2 \pi}=\cos x
$$

\uparrow

$$
\left(c_{2}, f\left(c_{2}\right)\right)
$$

average $x \approx^{ \pm} 0.5971$

$$
(-0.5971,0.83)
$$

4. Find the average value of the function $f(x)=\frac{4\left(x^{2}+1\right)}{x^{2}}, \quad[1,3]$ and all the values of x in the interval for which the function equals
b its average value.

$$
\int_{a}^{b} f(x) d x=f(c)(b-a)
$$

$$
\begin{aligned}
& f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& f(c)=\frac{1}{3-1} \int_{1}^{3} 4\left(1+x^{-2}\right) d x \\
& f(c)=\frac{4}{2} \int_{1}^{3}\left(1+x^{-2}\right) d x \\
& f(c)=2\left(x+\left.\frac{x^{-1}}{-1}\right|_{1} ^{3}\right. \\
& f(c)=2\left(x-\left.\frac{1}{x}\right|_{1} ^{3}\right. \\
& f(c)=2\left[\left(3-\frac{1}{3}\right)-\left(1-\frac{1}{1}\right)\right] \\
& f(c)=2\left[\frac{8}{3}-0\right] \\
& f(c)=\frac{16}{3}=\text { average value }
\end{aligned}
$$

