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n? n n? is called a Riemann sum of f for the partition A. (The sums in Section 4.2 are
examples of Riemann sums, but there are more general Riemann sums than
those covered there.)
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Definition of Definite Integral n—>0oR

If fis defined on the closed interval [a, b] and the limit of Riemann sums over
partitions A
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exists (as described above), then fis said to be integrable on [a, b] and the
limit is denoted by
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The limit is called the definite integral of f from a to b. The number « is the
lower limit of integration, and the number b is the upper limit of integration.

THEOREM 4.4 Continuity Implies Integrability
If a function f is continuous on the closed interval [a, b], then f'is integrable
on [a, b]. That is, [ f(x) dx exists.

THEOREM 4.5 The Definite Integral as the Area of a Region

If fis continuous and nonnegative on the closed interval [a, b], then the area
of the region bounded by the graph of f. the x-axis, and the vertical lines
x=aandx = bis

b
Area = J— f(x) dx.

(See Figure 4.22.)




Definitions of Two Special Definite Integrals

1. If fis defined at x = a, then j fx) dx = 0.

a ]
2. If fis integrable on [a, b], then j flx)dx = —j f(x) dx.
b ]

THEOREM 4.6 Additive Interval Property
If fis integrable on the three closed intervals determined by a, b, and ¢, then
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j fx) dx = f fx) dx + f fx) dx.

THEOREM 4.8 Preservation of Inequality

I

0= ] flx)dx.

every x in [a, b], then

f fx)dx = f g(x) dx.
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A proof of this theorem is given in Appendix A.
See LarsonCalculus.com for Bruce Edwards’s video of this proof.

1. If fis integrable and nonnegative on the closed interval [a, b], then

2. If fand g are integrable on the closed interval [, b] and f(x) <= g(x) for
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2. Evaluate the definite integral by the limit definition.
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3.  Write the limit as a definite integral on the interval [a,b] where C;
Is any point on the ith interval.
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4.  Sketch the region whose area is given by the definite integral.
Then use a geometrin farmiila tn dvaliiate the intenral
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5. Given I f (x)dx=4 gnq _[ f(X)dx=-1, evaluate
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