When you finish your home work you should be able to...
π Write the general solution of a differential equation
π Use indefinite integral notation for antide rivatives
π Use basic integration rules to find antide rivatives
π Find a particular solution of a differential equation
Warm-up: For each derivative, describe the original function F.

$$
\begin{aligned}
& \text { 1. } F^{\prime}(x)=2 x \\
& F(x)=x^{2} \\
& F(x)=x^{2}-1000
\end{aligned}
$$

$$
\text { 2. } F^{\prime}(x)=x^{3}
$$

$$
F(x)=\frac{1}{4} 4 x^{4}=\frac{1}{4} x^{4}
$$

$$
\text { or } F(x)=\frac{1}{4} x^{4}+4
$$

$$
\text { 3. } F^{\prime}(x)=\frac{1}{x^{2}}=x^{-2}
$$

$$
F(x)=-x^{-1}
$$

or

$$
F(x)=-x^{-1} \text { or } F(x)=\frac{-1}{x}+1
$$

or $F(x)=(\tan x)+60$

$$
\begin{aligned}
& \text { 5. } F^{\prime}(x)=\sin x \\
& F(x)=--\cos x=-\cos x
\end{aligned}
$$

$$
F(x)=6 x
$$

4. $(x)=\sec ^{2} x$
$F(x)=\tan x$

$$
F(x)=(-\cos x)-\pi
$$

$$
\text { 6. } F^{\prime}(x)=6
$$

$$
\text { or } F(x)=6 x+6
$$

\mathcal{A} function F is an antiderivative of f on an interval I if $F^{\prime}(x)=f(x)$ for all x in I.

Why is F called an antiderivative of f, rather than the antiderivative of f ?
There are infinitely many antiderivative when you consider a constant term that could have zeroed out during differentiation.
$\mathcal{T H E O}$ REM: REARS ENTATIONOF $\mathcal{A N} \mathcal{N T}$ I DERIVATIVES
If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form $G(x)=F(x)+C$, for all x in I where C is a constant.
$\mathcal{N O T A T I O N : ~ f u n c t i o n ~}$
an
integrate with respect to x
antiderivative
note: $f(x)$ is the $F^{\prime}(x)$ in the warm-up

Example 1: Verify the statement by showing that the derivative of the right side equals the integrand of the left side.

$$
\begin{aligned}
& 8 x^{3}+\frac{1}{2 x^{2}} ? \frac{\partial}{\partial x}\left(2 x^{4}-\frac{1}{2 x}+C\right) \\
& 8 x^{3}+\frac{1}{2 x^{2}} \stackrel{?}{=} 8 x^{3}-\frac{1}{2}\left(-x^{-2}\right)+0 \\
& 8 x^{3}+\frac{1}{2 x^{2}}=8 x^{3}+\frac{1}{2 x^{2}}
\end{aligned}
$$

Example 2: Find the general solution of the differential equation.

$$
\begin{aligned}
& \frac{d x}{a \cdot \frac{d y}{d x}=2 x^{-3} d x} \\
& \int 1 d y=\int 2 x^{-3} d x \\
& y+C_{1}=\frac{2 x^{-2}}{-2}+C_{2} \\
& y=-x^{-2}+C_{2}-C_{1}
\end{aligned}
$$

$$
y=-x^{-2}+C
$$

$$
\begin{aligned}
& { }_{6 \cdot}^{\partial \theta} \frac{d r}{d \theta}=\pi d \theta \\
& \int 1 d r=\int \pi d \theta \\
& r=\pi \theta+C
\end{aligned}
$$

$\mathcal{B A S}$ IC INTEGRATION RULES
Differentiation Formula
$\frac{d}{d x}[C]=0$
$\frac{d}{d x}[k x]=K$
$\frac{d}{d x}[k f(x)]=K f^{\prime}(x)$
$\frac{d}{d x}[f(x) \pm g(x)]=f^{\prime}(x) \pm g^{\prime}(x)$

Integration $\mathcal{F o r m u l a}$

$$
\frac{d}{d x}[k f(x)]=k f^{\prime}(x)
$$

$$
\frac{d}{d x}[\csc x]=-\csc x \cot x
$$

$$
\begin{aligned}
& \int 0 d x=C \\
& \int k d x=K x+C \\
& \int k f(x) d x=K \int f(x) d x=k F(x)+C \\
& \int[f(x) \pm g(x)] d x= \\
& \int f(x) d x \pm \int g(x) d x \rightarrow F(x) \pm G(x)+C \\
& \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1 \\
& \int \cos x d x=\sin x+C \\
& \int \sin x d x=-\cos x+C \\
& \int \sec { }^{2} x d x=\tan x+C \\
& \int \sec x \tan x d x=\sec x+C \\
& \int \csc x x d x=-\cot x+C \\
& \int \csc x \cot x d x=-\csc x+C
\end{aligned}
$$

$$
\frac{d}{d x}\left[x^{n}\right]=n x^{n-1} \quad \int x^{n} d x=\frac{x^{n+1}}{n+1}+C, n \neq-1
$$

$$
\frac{d}{d x}[\sin x]=\cos x \quad \int \cos x d x=\sin x+C
$$

$$
\frac{d}{d x}[\cos x]=-\sin x \quad \int \sin x d x=-\cos x+C
$$

$$
\frac{d}{d x}[\tan x]=\sec ^{2} x \quad \int \sec ^{2} x d x=\tan x+C
$$

$$
\frac{d}{d x}[\sec x]=\sec x \tan x
$$

$$
\frac{d}{d x}[\cot x]=-\csc ^{2} x \quad \int \csc ^{2} x d x=-\cot x+C
$$

Example 3：Find the indefinite integral and check the result by differentiation．

$$
\begin{aligned}
& =27 \frac{x^{3+1}}{3+1}-108 \frac{x^{2+1}}{2+1}+144 \frac{x^{1+1}}{1+1}-64 x+C \quad \text { 佨剔隹• } \int \frac{\sin x}{1-\sin ^{2} x} d x \\
& =\int \frac{\sin x}{\cos ^{2}} d x
\end{aligned}
$$ Pythagorean conjugates

$$
=\int \frac{\sin x}{\cos ^{2} x} d x
$$

$$
1+\cos \theta, 1-\cos \theta
$$

$$
1+\sin \theta, 1-\sin \theta
$$

$$
=\int \frac{1}{\cos x} \cdot \frac{\sin x}{\cos x} d x
$$

$$
=\int \sec x \tan x d x
$$

$$
=\sec x+C
$$

$$
\begin{aligned}
& \text { a. } \int(16-x) d x \\
& \text { d. } \int(1-u) \sqrt{u} d u \text { Product } 2 \text { functions } \\
& =\int 16 d x-\int x d x \\
& =16 x-\frac{1}{2} x^{2}+C \\
& \text { 6. } \int \frac{\sqrt[5]{x^{3}}-2 x}{\sqrt{x}} d x \text { quotient } \\
& =\frac{u^{1 / 2+1}}{\frac{1}{2}+1}-\frac{u^{3 / 2+1}}{\frac{3}{2}+1}+C \\
& =\int\left(\frac{x^{3 / 5}}{x^{1 / 2}}-\frac{2 x}{x^{1 / 2}}\right) d x \\
& =\int\left(x^{1 / 10}-2 x^{1 / 2}\right) d x \quad \begin{array}{l}
\text { diff of } \\
2 \text { functions }
\end{array}>\begin{array}{l}
\text { power } \\
\text { rule }
\end{array} \\
& =\frac{x^{1 / 10+1}}{\frac{1}{10}+1}-\frac{2 x^{1 / 2+1}}{\frac{1}{2}+1}+C \\
& =\frac{10}{11} x^{11 / 10}-\frac{4}{3} x^{3 / 2}+C \\
& \int \csc ^{2} \theta d \theta=-\cot \theta \\
& \int\left(1 \cdot(3 x)^{3}(-4)^{0}+3(3 x)^{2}(-4)^{1}+3(3 x)^{1}(-4)^{2}+1 \cdot(3 x)^{0}(-4)^{3}\right) d x \\
& =\frac{4 \theta^{1+1}}{1+1}-(-\cot \theta)+C \\
& =2 \theta^{2}+\cot \theta+C \\
& =\int\left(27 x^{3}-108 x^{2}+144 x-64\right) d x
\end{aligned}
$$

INITIAL $\operatorname{CO} \mathcal{N} \mathcal{D I T} I O \mathcal{N S} \mathcal{A N D}$ PARTICULAR SO LOTIONS

solutions, each differing from each other by a__ constant
This means that the graphs of any two _ antiderivatives

$$
\int \sin x d x=\cos x+C
$$

----vertical ----------- transLations of each other.

$$
\begin{aligned}
& F_{1}(x)=\cos x \\
& F_{2}(x)=6+\cos x \\
& F_{3}(x)=-6+\cos x
\end{aligned}
$$

In many applications of integration, you are given enough information to determine a_Particular solution. To do this, you need only know the value of $y=F(x)$ for one value of x. This information is called an --initial --------------- condition.

Example 4: Solve the differential equation.

$$
\begin{aligned}
& \text { a. } \quad g^{\prime}(x)=6 x^{2}, g(0)=-1 \\
& \frac{d y}{d x}=6 x^{2} \\
& g(x)=2 x^{3}+C \begin{array}{c}
\substack{\text { general } \\
\text { solution }}
\end{array} \\
& \int d y=\int 6 x^{2} d x \\
& -1=2(0)+C \\
& -1=C \\
& y=\frac{6 x^{2+1}}{2+1}+C \\
& g(x)=2 x^{3}-1 \longleftarrow \text { particular } \\
& y=2 x^{3}+C
\end{aligned}
$$

6. $\quad f^{\prime \prime}(x)=\sin x, f^{\prime}(0)=1, f(0)=6$

$$
\begin{array}{rlrl}
\text { dx } \frac{d^{2} y}{d x^{2}} & =\sin x d x & f^{\prime}(x) & =-\cos x+2 \\
\int \frac{d}{\partial x}(d y) & =\int \sin x d x & d x \frac{\partial y}{d x} & =(-\cos x+2) d x \\
\frac{d y}{d x} & =-\cos x+C & \int d y & =\int(-\cos x+2) d x \\
f^{\prime}(x) & =-\cos x+C & y & =-\sin x+2 x+C \\
1 & =-\cos 0+C & f(x) & =-\sin x+2 x+C \\
1 & =-1+C & 6 & =-\sin 0+2 \cdot 0+C \\
2 & =C & 6 & =C
\end{array}
$$

