When you finish your homework you should be able to...

- π Write the general solution of a differential equation
- π Use indefinite integral notation for antiderivatives
- π Use basic integration rules to find antiderivatives
- π Find a particular solution of a differential equation

Warm-up: For each derivative, describe the original function $\,F$.

Why is F called <u>an</u> antiderivative of f, rather than <u>the</u> antiderivative of f?

There are infinitely many antiderivative when you consider a constant term that could have zeroed out during differentiation.

THEOREM: REPRESENTATION OF ANTIDERIVATIVES

If F is an antiderivative of f on an interval I, then G is an antiderivative of f on the interval I if and only if G is of the form G(x) = F(x) + C, for all x in I where C is a constant.

Example 1: Verify the statement by showing that the derivative of the right side equals the integrand of the left side.

$$\int \left(8x^3 + \frac{1}{2x^2}\right) dx = 2x^4 - \frac{1}{2x} + C$$

$8x^{3} + \frac{1}{2x^{2}} \stackrel{?}{=} \frac{\partial}{\partial x} \left(2x^{4} - \frac{1}{2x} + C \right)$
$8x^{3}_{x+2x^{2}} \stackrel{?}{=} 8x^{3}_{x-\frac{1}{2}}(-x^{-2})+0$
$8x^{3} + \frac{1}{2x^{2}} = 8x^{3} + \frac{1}{2x^{2}}$

Example 2: Find the general solution of the differential equation.

BASIC INTEGRATION RULES

Differentiation Formula	Integration Formula
$\frac{d}{dx}[C] = 0$	$\int 0 dx = \mathcal{L}$
$\frac{d}{dx}[kx] = \mathbf{k}$	$\int k dx = K x + C$
$\frac{d}{dx}\left[kf(x)\right] = \text{Kf}'(\times)$	$\int kf(x)dx = \kappa \int f(x)dx = \kappa F(x) + C$
$\frac{d}{dx} \left[f(x) \pm g(x) \right] = f'(x) \pm g'(x)$	$\int \left[f(x) \pm g(x) \right] dx =$
	$\int f(x) dx \pm \int g(x) dx \rightarrow F(x) \pm G(x) + C$
$\frac{d}{dx} \left[x^n \right] = n \chi^{n-1}$	$\int x^n dx = \frac{x^{n+1}}{n+1} + C, n \neq -1$
$\frac{d}{dx}[\sin x] = \cos x$	$\int \cos x dx = \sin x + C$
$\frac{d}{dx}[\cos x] = -\sin x$	$\int \sin x dx = -\cos x + C$
$\frac{d}{dx}[\tan x] = \frac{\int e^2 x}{\sqrt{2}}$	$\int \sec^2 x dx = \tan x + C$
$\frac{d}{dx}[\sec x] = \frac{1}{\sqrt{2}} \int \frac{dx}{dx} \left[\frac{1}{\sqrt{2}} \int \frac{dx}{dx} \right] = \frac{1}{\sqrt{2}} \int \frac{dx}{dx} \int \frac{dx}$	$\int \sec x \tan x dx = \operatorname{secx} + \operatorname{C}$
$\frac{d}{dx}[\cot x] = -\csc^2 x$	$\int \csc^2 x dx = -\cot x + C$
$\frac{d}{dx}[\csc x] = -\csc x \cot x$	$\int \csc x \cot x dx = -\csc x + C$

Example 3: Find the indefinite integral and check the result by differentiation.

a.
$$\int (16 - x) dx$$

= $\int 16 dx - \int x dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx + f dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx + f dx + f dx$
= $\int 16 dx - \int x dx + f dx + f dx + f dx$
= $\int 16 dx - \int x dx + f dx + f dx + f dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f dx$
= $\int 16 dx - \int x dx + f d$

In many applications of integration, you are given enough information to determine

a particular solution. To do this, you need only know the

value of y = F(x) for one value of x. This information is called an

initial condition.

Example 4: Solve the differential equation.

a.
$$g'(x) = 6x^2$$
, $g(0) = -1$
 $dy = 6x^2$
 $g(x) = 2x^3 + C$
 $g(x) = 2x^3 - 1$
 $g(x) = 2x^3 - 1$
 $g(x) = 2x^3 - 1$
 $g(x) = 2x^3 - 1$

b.
$$f''(x) = \sin x, f'(0) = 1, f(0) = 6$$

$$f'(x) = \sin x \, dx$$

$$f'(x) = -\cos x + 2$$

$$f'(x) = -\cos x + 2, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dy = \int (-\cos x + 2) \, dx$$

$$\int dx = -\sin x + 2x + C$$

$$\int (-\cos x + 2) \, dx$$

$$\int dx = -\sin x + 2x + C$$

$$\int (-\cos x + 2) \, dx$$

$$\int dx = -\sin x + 2x + C$$

$$\int (-\cos x + 2) \, dx$$

$$\int dx = -\sin x + 2x + C$$

$$\int (-\cos x + 2) \, dx$$

$$\int dx = -\sin x + 2x + C$$

$$\int (-\cos x + 2) \, dx$$

$$\int dx = -\sin x + 2x + C$$

$$\int (-\cos x + 2) \, dx$$

$$\int dx = -\sin x + 2x + C$$

$$\int (-\cos x + 2) \, dx$$

$$\int dx = -\sin x + 2x + C$$

$$\int (-\cos x + 2) \, dx$$