When you are done with your home work you should be able to...
π Determine intervals on which a function is concave upward or concave downward
π Find any points of inflection of the graph of a function
π Apply the Second De rivative $\mathcal{T e}$ est to find relative extrema of a function Warm-up: Consider the graph of f^{\prime} shown below.

a. Identify the intervals) on which f is
i. increasing $\rightarrow f^{\prime}>0$
$(-9,-5) \cup(-1,8)$
ii. decreasing $\rightarrow f^{\prime}<0$
$(-\infty,-9) \cup(-5,-1) \cup(8, \infty)$
6. Estimate the value (s) of x at which f has a relative
i. minimum

$$
x=-9,-1
$$

ii. maximum

$$
x=-5,8
$$

$\mathcal{D E F I N I T I O N} O \mathcal{F} \operatorname{CON} C \mathcal{A} \mathcal{V} I \mathcal{T Y}$
Let f be differentiable on an open interval I. The graph of f is concave upward on I if f^{\prime} is increasing on the interval and concave downward on I if f^{\prime} is decreasing on the interval.
$\mathcal{T H E O}$ REM: $\mathcal{T E S T} \mathcal{F O R} \operatorname{CON} \mathcal{N} \mathcal{A V I T V}$
Let f be a function whose second de rivative exists on an open interval I.

1. If $f^{\prime \prime}(x)>0$ for all x in I, then f is concave upward on I.
2. If $f^{\prime \prime}(x)<0$ for all x in I, then f is concave downward on I.

Example 1: Identify the open intervals on which the function is concave upward or concave downward.

$y^{\prime}(x)=-3 x^{2}+6 x$

$$
y^{\prime \prime}(x)=-6(x-1)
$$

$$
y^{\prime \prime}(x)=-6 x+6
$$

$y^{\prime \prime}(0)=-6(0-1)=6>0$
$0=-6 x+6$

$$
y^{\prime \prime}(2)=-6(2-1)=-6<0
$$

$$
6 x=6
$$

y is concave upward on $(-\infty, 1)$ and
concave downward on $(1, \infty)$
y is concave upward on $(-\infty, 1)$ and
concave downward on $(1, \infty)$

$$
\begin{aligned}
f(x) & =-x^{3}+3 x^{2}-2 \\
f^{\prime}(x) & =-3 x^{2}+6 x \\
f^{\prime \prime}(x) & =-6 x+6
\end{aligned}
$$

$f(x)=x+2 \csc x$
$f^{\prime}(x)=1-2 \csc x \cot x$

$$
\begin{aligned}
& f^{\prime}(x)=1-2 \csc x \cot x \\
& f^{\prime \prime}(x)=-2\left[(-\csc x \cot x) \cot x+\csc x\left(-\csc ^{2} x\right)\right]
\end{aligned}
$$

$$
f^{\prime \prime}(x)=2 \csc x\left(\cot ^{2} x+\csc ^{2} x\right)
$$

$2 \csc x=0$
f is concave lepward on $(0, \pi)$

$$
\begin{cases}\cot ^{2} x+\csc ^{2} x=0 & -\frac{1}{2}+\frac{\pi}{2} \\ \frac{\cos ^{2} x+1}{\sin ^{2} x}=0 & -\pi \\ \cos ^{2} x=-1 & f^{\prime \prime}\left(\frac{\pi}{2}\right)=2(-1)(0+1) \\ \text { no real zeros } & f^{\prime \prime}\left(\frac{\pi}{2}=2(1)(0+1)\right.\end{cases}
$$ and concave

downward on $(-\pi, 0)$
$\mathcal{D E F} I \mathcal{N} I T I O \mathcal{N} O \mathcal{F} P O I \mathcal{N T} O \mathcal{F} I \mathcal{N} \mathcal{F} \mathcal{E E C T} I O \mathcal{N}$
Let f be a function that is continuous on an openintervaland let che an element in the interval. If the graph of f has a tangent line at the point $(c, f(c))$, then this point is a point of inflection of the graph of f if the concavity of f changes from upward to downward or from downward to upward at the point.
$\mathcal{T H E O R E M}:$ POINTS OFINSLECTION
If $(c, f(c))$ is a point of inflection of the graph of f, then either $f^{\prime \prime}(c)=0$ or $f^{\prime \prime}$ does not exist at $x=c$. Points of inflection only if there's a change in concavity.
Example 2: Consider the function $g(x)=2 x^{4}-8 x+3$.
a. Discuss the concavity of the graph of g.

$$
\begin{array}{ll}
g^{\prime}(x)=8 x^{3}-8 & (-\infty, 0) ;(0, \infty) \\
g^{\prime \prime}(x)=24 x^{2} & \quad+ \\
0=24 x^{2} & g^{\prime \prime}(x)=24 x^{2} \\
x=0 & g^{\prime \prime}(-1)=24>0 \\
g^{\prime \prime}(1)=24>0 & \begin{array}{l}
\text { ais concave } \\
\text { upward }(-\infty, 0) \cup \\
(0, \infty) . g \text { is never } \\
\text { concave downward. }
\end{array}
\end{array}
$$

6. Find all points of inflection.

Note: Since there's no change in concavity,
NONE there's no points of inflection.

Let f be a function such that $f^{\prime}(c)=0$ and the second derivative of f exists on an open interval containing c.

1. If $f^{\prime \prime}(x)>0$, then f has a relative minimum at $(c, f(c))$.
2. If $f^{\prime \prime}(x)<0$, then f has a relative maximum at $(c, f(c))$.
3. If $f^{\prime \prime}(x)=0$, the test $\mathcal{F A I L S}$ and you need to run the FIRST DERIVATIVE $\mathcal{T E S T}$.

Example 3: Find all relative extrema. Use the Second Derivative $\mathcal{T e}$ st where
applicable.
a. $f(x)=x^{3}-5 x^{2}+7 x$
(1) Find C.N. [for f]

$$
f^{\prime}(x)=3 x^{2}-10 x+7
$$

$$
f^{\prime}(x)=3 x^{2}-7 x-3 x+7
$$

$$
f^{\prime}(x)=x(3 x-7)-1(3 x-7)
$$

$$
f^{\prime}(x)=(3 x-7)(x-1)
$$

$$
0=(3 x-7)(x-1)
$$

$$
3 x-7=0 \text { or } x-1=0
$$

$$
x=\frac{7}{3}
$$

$$
x=1
$$

$$
C_{1}=\frac{7}{3} \text { and } C_{2}=1
$$

(2) Find $f^{\prime \prime}(x)$

$$
f^{\prime \prime}(x)=6 x-10
$$

$$
\begin{aligned}
f\left(\frac{7}{3}\right) & =\left(\frac{7}{3}\right)^{3}-5\left(\frac{7}{3}\right)^{2}+7\left(\frac{7}{3}\right) \\
& =\frac{7}{3}\left[\frac{49}{9}-\frac{35}{3}+7\right] \\
& =\frac{7}{3}\left[\frac{49-105+63}{9}\right] \\
& =\frac{7}{3}\left[\frac{7}{9}\right]
\end{aligned}
$$

(3) Plug c_{1} and c_{2} into $f^{\prime \prime}(x)$ to run the and Derivative Test $=\frac{49}{27}$

$$
f^{\prime \prime}\left(\frac{7}{3}\right)={ }^{2} 6\left(\frac{7}{3}\right)-10=4>0
$$

curving upward at $c_{1}=\frac{7}{3}$, so there's a relative minimum at $\left(\frac{7}{3}, f\left(\frac{7}{3}\right)\right)=\left(\frac{7}{3}, \frac{49}{27}\right.$.

$$
f^{\prime \prime}(1)=6(1)-10=-4<0
$$

curving downward of $c_{2}=1$, so there's a relative max at $(1, f(1))=(1,3)$.
6. $f(x)=\frac{x}{x-1}$

$$
f^{\prime}(x)=\frac{1(x-1)-x(1)}{(x-1)^{2}}
$$

$f^{\prime}(x)=\frac{-1}{(x-1)^{2}} \neq 0$ and at $x=1$ there's a vertical asymptote, so there's no relative extrema.

Example 4: Sketch the graph of a function f having the given characteristics.
$f(0)=f(2)=0 \longrightarrow x$-intercepts
$f^{\prime}(x)>0$ if $x<1 \rightarrow f$ is \uparrow on $(-\infty, 1)$
$f^{\prime}(1)=0 \rightarrow$ at $\mathrm{x}=1$, f has a rel. max $f^{\prime}(x)<0$ if $x>1 \rightarrow$ fist \downarrow on $(1, \infty)$ $f^{\prime \prime}(x)<0 \quad f$ is concave \downarrow on $(-\infty, \infty)$

