When you are done with your home work you should be able to...
π Determine intervals on which a function is increasing or decreasing
π Apply the First \mathcal{D} derivative $\mathcal{T e}$ st to find relative extrema of a function
Warm-up: Find the equation of the line tangent to the function $f(x)=\tan x$ at $x=\frac{3 \pi}{4}$.
se f $f^{\prime}(x)=\sec ^{2} x$
$f^{\prime}(3 \pi / 4)=(\sec 3 \pi / 4)^{2}=(-\sqrt{2})^{2}=2$
$y^{2 x 0^{d \theta}} f\left(\frac{3 \pi}{4}\right)=\tan \frac{3 \pi}{4}=-1$
equation unguent
INCREAS ING $\mathfrak{A N D}$ DECREASING FUNCTIONS
\mathcal{A} function is__ncreasing_-_-_ if, as x moves to the right, its graph moves up, and is decreasing if its graph moves \qquad . A positive derivative implies that the function is \square increasing -negative derivative implies that the function is decreasing. Intervals

A function f is increasing on an interval if for any two numbers x_{1} and x_{2} in the in the interval, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)<f\left(x_{2}\right)$.
\mathcal{A} function f is decreasing on an interval if for any two numbers x_{1} and x_{2} in the interval, $x_{1}<x_{2}$ implies $f\left(x_{1}\right)>f\left(x_{2}\right)$.
$\mathcal{T H E O R E M}: \mathcal{T E S T} \mathcal{F O R}$ INCREASe ING $\mathcal{A N D}$ DECREeS ING FUNCTIONS
Let f be a function that is continuous on the closed interval $[a, b]$, and differentiable on the open interval (a, b).

1. If $f^{\prime}(x)>0$ for all x in (a, b), then f is increasing on (a, b).
2. If $f^{\prime}(x)<0$ for all x in (a, b), then f is decreasing on (a, b).
3. If $f^{\prime}(x)=0$ for all x in (a, b), then f is constant on (a, b).

$$
f^{\prime}(a)=f^{\prime}(b)=0 \stackrel{c}{f^{\prime 2}>0 \text { af }}
$$

 $f^{\prime}(x)$ is positive on ($-\infty, a$).
$f^{\prime}(x)$ is negative on (a, b)
$f^{\prime}(x)$ is positive on
GUIDELINES FOR FINDING INTERVALS ONVWHICH A FUNNCTIONIS (b, ∞) INCREASING OR DECREAS INN G

Let f be continuous on the (a, b). To find the open intervals on which f is inc teasing or decreasing, use the following steps.

1. Locate the __Critical numbers to de ermine test intervals.
2. Determine the sign of $\boldsymbol{f}^{\prime}(\mathbf{x})$ at one test value in each of the intervals. intervals
3. Use the test for increasing and decreasing determine whether f is increasing or decreasing on each interval
\qquad .

These guidelines are also valid if the interval (a, b) is replaced by an interval of the form $(-\infty, b),(a, \infty)$, or $(-\infty, \infty)$.

Example 1: Identify the open intervals on which the function is increasing or decreasing.

$$
f(x)=27 x-x^{3}
$$

a. Find the critic al numbers of f.

$$
\begin{aligned}
f^{\prime}(x) & =27-3 x^{2} \\
0 & =27-3 x^{2} \\
3 x^{2} & =27 \\
\sqrt{x^{2}} & =\sqrt{9}
\end{aligned} \quad \begin{aligned}
& x= \pm 3 \\
& c= \pm 3
\end{aligned}
$$

6. Run the test for increasing and decreasing intervals.

$$
\begin{aligned}
& \text { (1) Number line }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (2) Testavalue in each interval } \\
& f^{\prime}(-4)=27-3(-4)^{2}<0 \\
& f^{\prime}(0)=27-3(0)^{2}>0 \\
& f^{\prime}(4)=27-3(4)^{2}<0
\end{aligned}
$$

i. Find the open intervals) on which the function is decreasing.

$$
(-\infty,-3) \cup(3, \infty)
$$

ii. Find the open interval(s) on which the function is inc easing.
$(-3,3)$

$$
\begin{aligned}
& f(x)=2 x x-x^{3} \\
& f^{\prime}(x)=27-3 x^{2}
\end{aligned}
$$

Example 2: Identify the open intervals on which the function is increasing or decreasing.

$$
f(x)=\cos ^{2} x-\cos x, 0<x<2 \pi
$$

a. Find the critical numbers of f.

$$
\begin{array}{rlrl}
f^{\prime}(x) & =-2 \cos x \sin x+\sin x \\
0 & =-\sin x(2 \cos x-1) \\
-\sin x=0 & 2 \cos x-1 & =0 \\
\sin x=0 & \cos x & =\frac{1}{2} \\
x=\pi & x & =\pi / 3,5 \pi / 3
\end{array}
$$

$$
c=\frac{\pi}{3}, \pi, \frac{5 \pi}{3}
$$

6. Run the test for inc creasing and decreasing intervals.

$$
\begin{array}{ll}
(0, \pi / 3) & f^{\prime}(x)
\end{array}=-\sin x(2 \cos x-1)
$$

i. Find the open interval(s) on which the function is decreasing.

$$
\left(0, \frac{\pi}{3}\right) \cup(\pi, 5 \pi / 3)
$$

ii. Find the open interval(s) on which the function is inc easing.

$$
\left(\frac{\pi}{3}, \pi\right) \cup\left(\frac{5 \pi}{3}, 2 \pi\right)
$$

$\mathcal{T H E O}$ REM: $\mathcal{T H E} \mathcal{F I} \mathcal{R S} \mathcal{T} \mathcal{D E R I V A T I V E} \mathcal{T E S T}$

Let c be a critical number of a function f that is continuous on an open interval I containing c. If f is differentiable on the interval, except possibly at c, then $f(c)$ can be classified as follows:

1. If $f^{\prime}(x)$ changes from negative to positive at c, then f has arelative minimum at $(c, f(c))$.
2. If $f^{\prime}(x)$ changes from positive to negative at c, then f has arelative maximum at $(c, f(c))$.
3. If $f^{\prime}(x)$ is positive on both sides of c or negative on both sides of c, then $f(c)$ is neither a relative minimum or relative maximum.

Example 3: Consider the function $g(x)=x^{2 / 3}-4 . \quad g(x)=\left(x^{1 / 3}\right)^{2}-4$
a. Find the critical numbers of g.

$$
\begin{array}{ll}
g^{\prime}(x)=\frac{2}{3} x^{-1 / 3} & c=0 \\
g^{\prime}(x)=\frac{2}{3 x^{1 / 3}} & \\
0=\frac{2}{3 x^{1 / 3}} \quad \begin{array}{l}
0=2 \\
\text { false nozeros }
\end{array}
\end{array}
$$

6. Run the test for increasing and decreasing intervals.

$$
\begin{aligned}
& g^{\prime}(x)=\frac{2}{3 x^{1 / 3}} \\
& g^{\prime}(-1)=\frac{2}{3 \sqrt[3]{-1}}<0 \\
& g^{\prime}(1)=\frac{2}{3 \sqrt[3]{1}}>0
\end{aligned}
$$

i. Find the open intervals) on which the function is decreasing.

$$
(-\infty, 0)
$$

ii. Find the open intervals) on which the function is increasing.

$$
(0, \infty)
$$

c. Apply the First \mathcal{D} derivative $\mathcal{T e s t}$.
i. Identify all relative minima.
-4 /occurs at $(0,-4)$

$$
\begin{aligned}
(c, g(c)) & =(0, g(0)) \\
& =(0,-4)
\end{aligned}
$$

ii. Identify all relative maxima.

NONE

Example 4: The graph of a function f is given. Sketchagraph of the derivative of f.

