When you are done with your home work you should be able to...
π Understand and use Rolle's Theorem
π Understand and use the Mean Value Theorem
Warm-up: Locate the global extrema of the function $f(x)=x^{3}-12 x$ on the closed interval $[0,4]$.

$$
\begin{array}{l|l}
f^{\prime}(x)=3 x^{2}-12 & f(2)=-16 \\
0=3 x^{2}-12 & f(0)=0 \\
x^{2}=4 & \\
x= \pm 2 & f(4)=16 \\
c=2 &
\end{array}
$$

The global min . is -16 at $(2,-16)$.
The global max.
is 16 at $(4,16)$

RU LLE'S THEOREM
The Extreme_-_-_Value Theorem states that a continuous function on a copse inter rad $[a, b]$---- must tares off a -_minimum and a_{\ldots} maximum___ Both of these values, however, can occur at the _-_endpoints_-_----_. Tole's Theorem gives conditions that guarantee the existence of an extreme value in the _-_interior closed interval.
$\mathcal{T H E O R E M}: \mathcal{R O L L E} S \mathcal{T H E O R E M}$
Let f be continuous on the closed interval $[a, b]$ and differentiable on the open interval (a, b). If $f(a)=f(b)$ then there is at least one number c in (a, b) such t hat $f^{\prime}(c)=0$.

fisc cont. on $[a, b] /$ sis differentiable on (a, b)

$$
f(a)=f(b) J
$$ So Poles The may be

applied.

Example 1: Determine whether Rolle's Theorem can be applied to f on the closed interval $[a, b]$. If Rolle's Theorem can be applied, find all values of c in the open interval (a, b) such that $f^{\prime}(c)=0$.

$$
\text { a. } f(x)=\cos 2 x,[-\pi, \pi]
$$

Conditions:
f is cont ion $[-\pi, \pi] /$ f is differentiable on $(-\pi, \pi) \sqrt{ }$

$$
f(-\pi)=1=f(\pi) \downharpoonleft
$$

Robles Thy can be applied Yaay!

$$
\begin{aligned}
& \text { Poles Thy can be applied } \\
& \text { Apply Rolls's The } \\
& f^{\prime}(x)=-2 \sin 2 x \\
& 0=-2 \sin 2 x
\end{aligned} \quad \begin{aligned}
& 0=\pi=\pi \\
& x=-\frac{\pi}{2}, 0, \frac{\pi}{2}
\end{aligned}
$$

6. $f(x)=x^{2}-5 x+4,[1,4]$

$\mathcal{T H E O} \mathcal{R E M}: \mathcal{T H E} \mathcal{M E A \mathcal { N }} \mathcal{V} \mathcal{A L U E} \mathcal{T H E O R E M}$
If f is continuous on the closed interval $[a, b]$, and differentiable on the open interval (a, b), then there exists a number c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Example 2: Consider the function $f(x)=\sqrt{x}$ on the closed interval from $[1,9]$.
a. Graph the function on the given interval.

6. Find and graph the secant line through the endpoints on the same coordinate plane.

$$
\begin{aligned}
& f(x)=\sqrt{x} \\
& a=1, f(a)=f(1)=\sqrt{1}=1 \\
& b=9, f(b)=f(9)=\sqrt{9}=3
\end{aligned}
$$

c. Find and graph any tangent lines to the graph of f that are parallel to the secant line.

$$
\begin{aligned}
& f(x)=x^{1 / 2} \\
& f^{\prime}(x)=\frac{1}{2} x^{-1 / 2}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{1}{2 \sqrt{x}} & =\frac{1}{4} \\
2 \sqrt{x} & =4 \\
\sqrt{x} & =2 \\
x & =4
\end{aligned}
$$

