When you are done with your home work you should be able to...
π Understand the definition of a function on an interval
π Understand the definition of relative extrema of a function on an open interval
π Find extrema on a closed interval
Warm-up: Determine the point (s) at which the graph of $f(x)=2 x^{2}-8 x+5$ has a horizontal tangent.

$$
\begin{gathered}
f^{\prime}(x)=4 x-8 \\
0=4 x-8 \\
8=4 x \\
2=x \\
f(2)=-3
\end{gathered}
$$

At $(2,-3) f$ has a horizontal tangent.

EXTREMA Of A FUNNCTION
In calculus, much effort is devoted to analyzing the behavior of a function f on an interval _-_ I. Does f have a __minimum___-_ value or ___maximum__- value on I ? Where is f decreasing this chapter, you will learn how differentiation can be used to answer these questions.
$\mathcal{D E F} I \mathcal{N} I T I O \mathcal{N} O \mathcal{F} \operatorname{EXTREMA}$
Let f be defined on an open interval I containing c.

1. $\quad f(c)$ is the minimum of f on I if $f(c) \leq f(x)$ for all x in I.
2. $f(c)$ is the maximum of f on I if $f(c) \geq f(x)$ for all x in I.

The minimum and maximum of a function on an interval are the extreme values, or extrema (the singular form of extrema is extremum), of the function on the interval. The minimum and maximum of a function on an interval are also called the absolute minimum and absolute maximum, or the global minimum and global maximum, on the interval.

Let's check out the functions below. Indent maximum and minimum of each function.
a.
$\mathcal{T H E O R E M}: \mathcal{T H E}$ EXTREME VALUE $\mathcal{T H E O R E M}$
If f is continuous on a closed interval $[a, b]$, then f has 6 ot h a minimum and a maximum on the closed interval.
$\mathcal{D E F I N} \mathcal{N} I I O \mathcal{N} O \mathcal{F}$ RELATIVE EXTREMA

1. If there is an open interval containing c on which $f(c)$ is a maximum, then $f(c)$ is called a relative maximum of f, or you can say that f has a relative maximum at $(c, f(c))$.
2. If there is an open interval containing c on which $f(c)$ is a minimum, then $f(c)$ is called a relative minimum of f, or you can say that f has a relative minimum at $(c, f(c))$.

Example 1: Find the value of the derivative at the extremum $(0,1)$, for the function $f(x)=\cos \frac{\pi x}{2}$.

$$
\begin{aligned}
& f^{\prime}(x)=\left(-\sin \frac{\pi x}{2}\right) \cdot \frac{\pi}{2} \\
& f^{\prime}(0)=\left(-\sin \frac{\pi \cdot 0}{2}\right) \frac{\pi}{2}=0
\end{aligned}
$$

$\mathcal{D E F I N I T I O N} O \mathcal{F} \mathcal{A}$ CRITICAL \mathcal{N} UMBER
Let f be defined at c. If $f^{\prime}(c)=0$ OR if f is not differentiable at c, then c is a critical number.

Example 2: Find any critical numbers of the following functions.

$$
\begin{aligned}
& \text { a. } f(x)=2 x^{2}-8 x+5 \\
& C=2 \\
& f^{\prime}(x)=4 x-8 \\
& 0=4 x-8 \\
& x=2 \\
& \text { 6. } g(x)=\sin ^{2} x-\sin 2 x,[0,2 \pi) \\
& g^{\prime}(x)=2 \sin x \cos x-2 \cos 2 x \\
& 0=2(\sin x \cos x-\cos 2 x) \\
& c \approx 0.5536,2.1244,3.6952, \\
& 5.2660 \\
& x \approx 0.5536,2.1244,3.6952,5.2660 \\
& \text { c. } s(t)=\frac{3 t}{t^{2}-4} \\
& 0=-3\left(t^{2}+4\right) \\
& 0=t^{2}+4 \\
& t^{2}=-4 \rightarrow t= \pm 2 i \\
& S^{\prime}(t)=\frac{3 t^{2}-12-6 t^{2}}{\left(t^{2}-4\right)^{2}} \\
& s^{\prime}(t)=\frac{-3\left(t^{2}+4\right)}{\left(t^{2}-4\right)^{2}} \\
& t \notin \mathbb{R} \\
& \text { no critical \#'s }
\end{aligned}
$$

$\mathcal{T H E O R E M}: ~ R E L A T I V E ~ E X T R E M A$ OCCUR ONLY $\mathcal{A T}$ CRITICAL $\mathcal{N U M B E R S}$
If f has a relative minimum or relative maximum at $x=c$, then c is a critical number of f.
$\mathcal{G U I D E L I N} \mathcal{N} S \mathcal{F O R} \mathcal{F} I \mathcal{N D I N G} \operatorname{EXT} \mathcal{R E M A}$ ON $\mathcal{A} \operatorname{CLOSEDINTERVAL}$
To find the extrema of a continuous function f on a closed interval $[a, b]$, use the following steps.

1. Find the critical numbers of f in (a, b).
2. Evaluate f at each critical number in (a, b).
3. Evaluate f at each endpoint of $[a, b]$.
4. The least of these numbers is the minimum. The greatest is the maximum.

Example 3: Locate the absolute extrema of the following functions function on the closed interval.
1)

$$
\begin{aligned}
& C N \\
& f^{\prime}(x)=-3 \cdot \frac{f(x)}{\sin x} \\
& O=-3 \cos x,[0,2 \pi] \\
& 0=\sin x \\
& x=0, \pi, 2 \pi \rightarrow[0,2 \pi] \\
& C=\pi \rightarrow(0,2 \pi)
\end{aligned}
$$

2) $f(c)$

$$
f(\pi)=3 \cos \pi=-3
$$

3) evaluate the end points at f

$$
f(0)=3, f(2 \pi)=3
$$

4) Conclusion

The absolute minimum is -3 and occurs at $(\pi,-3)$.
The absolute maximum is 3 and $0<c u r s$ at $(0,3)$ and $(2 \pi, 3)$.
6. $g(t)=\frac{t}{t-2},[3,5]$

Example 4: A retailer has determined that the cost \mathcal{C} of ordering and storing x units of a product is $C=2 x+\frac{300,000}{x}, 1 \leq x \leq 300$. The delivery truck can 6 ring at most 300 units per order.
a. Find the order size that will minimize cost.

$$
\begin{array}{c|l}
C^{\prime}(x)=2-\frac{300000}{x^{2}} \\
0=2-\frac{300000}{x^{2}} \\
\frac{300000}{x^{2}}=2 \\
2 x^{2}=300000
\end{array}\left|\begin{array}{l}
C(1)=300,002 \\
x= \pm 387 \\
\text { no C.N. } \rightarrow[1,300]
\end{array} \quad \begin{array}{l}
C(300)=1,600
\end{array}\right| \begin{aligned}
& \text { An order size of } \\
& \text { yields the min } \\
& \text { of } \$ 1,600 .
\end{aligned}
$$

6. Could the cost be decreased if the truck of $\$ 1,600$. 6 ring at most 400 units? Explain. $[1,400]$ yes. 387 units would

$$
c=387
$$ y^{\prime} field a cost of

$$
C(387)=1,549 \quad C(400) \doteq 1,550
$$ $\$ 1,549$.

