When you finish your home work you should be able to...
π Use Sigma \mathfrak{N} station to \mathcal{W} rite and evaluate a S um
π Understand the Concept of Area
π Approximate the Are a of a Plane Region
π Find the Are a of a Plane Region Zlsing Limits
Warm-up: Evaluate the following limits.

1. $\lim _{x \rightarrow \infty} \frac{25 x^{2}-5 x+3}{x^{2}}=25$
2. $\lim _{x \rightarrow \infty}\left(\frac{2 x^{3}+6 x^{2}}{3 x^{3}}+10\right)=\frac{2}{3}+10$

$$
=\frac{32}{3}
$$

SIGMA $\mathcal{N O T A T I O \mathcal { N }}$
The sum of n terms a_{1}, \ldots, a_{n} is written as $\sum_{i=1}^{n} a_{i}=a_{1}+a_{2}+a_{3}+\cdots+a_{n}$ where i is the index of summation, a_{i} is the \mathbf{i} th term of the sum, and the upper and lower bounds of summation are n and 1 .

Example 1: Find the sum.

$$
=1+2+3+4+5
$$

$$
=(1)^{2}+(2)^{2}+(3)^{2}+(4)^{2}
$$

$$
a_{1} a_{2} a_{3} a_{4} a_{5}{ }^{2} x=30
$$

$$
=15
$$

c. $\sum_{i=1}^{3} \sqrt{i}$

$$
=\sqrt{1}+\sqrt{2}+\sqrt{3}
$$

$$
\begin{aligned}
& f(x)=x^{2} \\
& f(1)=(1)^{2}=1 \\
& a_{i}=i^{2} \\
& a_{1}=(1)^{2}=1 \\
& a_{2}=(2)^{2}=4
\end{aligned}
$$

$$
\begin{aligned}
& a_{i}=i^{2}=1,4,9,16, \ldots \\
& \uparrow \uparrow \uparrow \\
& a_{1} a_{2} a_{3}
\end{aligned}
$$

Summation Properties

$$
\text { 1. } \sum_{i=1}^{n} k a_{i}=k \sum_{i=1}^{n} a_{i} \quad \text { 2. } \quad \sum_{i=1}^{n}\left(a_{i} \pm b_{i}\right)=\sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}
$$

Example 2: Find the sum.

$$
\begin{aligned}
& \text { a. } \sum_{i=1}^{4} 2 \\
= & 2+2+2+2 \\
= & 2 \cdot 4 \\
= & 8
\end{aligned}
$$

Theorem: Summation Formulas

1. $\quad \sum_{i=1}^{n} c=c n$
2. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
3. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
you do not need to memorize

Example 3: Evaluate the following sums.

$$
\begin{aligned}
& \quad a \cdot \sum_{i=1}^{n}\left(3 i-i^{2}\right) \\
= & 3 \sum_{i=1}^{n} i-\sum_{i=1}^{n} i^{2} \\
= & 3 \frac{n(n+1)}{2}-\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 6. } \sum_{i=1}^{n}\left(6 i+4 i^{3}\right) \\
= & 6 \sum_{i=1}^{n} i+4 \sum_{i=1}^{n} i^{3} \\
= & 6 \frac{n(n+1)}{2}+4 \frac{n^{2}(n+1)^{2}}{4}
\end{aligned}
$$

Area
In Euclide an geometry, the simplest type of plane region is a rectangle__-_. The definition for the area of a rectangle is $\underline{A}=\underline{b}$ __-. From this definition, you can develop formulas for the are as of many other plane regions such as triangles. To determine the area of a triangle, you can form a_vectangle_-_-_ whose area is_twice_-_ that of the triangle_-_-_-_. Once you know how to find the are a of a triangle, you can determine the are a of any polygon by subdividing the polygon into_ triangular__-_ regions.

Parallelogram
Figure 5.6
Finding the areas of regions other than polygons is more difficult. The ancient Greeks were able to determine formulas for the are as of some general regions by the \quad exhaustion_-- method. Essentially, the method is a limiting process in which the area is squeezed._-------_ between two polygons -one _inscribed in the region and one circumscribed_----- ab out the region.

ARCHIMEDES (287-212 в.c.)
Archimedes used the method of exhaustion to derive formulas for the areas of ellipses, parabolic segments, and sectors of a spiral. He is considered to have been the greatest applied mathematician of antiquity.
See LarsonCalculus.com to read more of this biography.

The exhaustion method for finding the area of a circular region
Figure 5.7

$$
s(n) \leq(\text { Area of region }) \leq S(n)
$$

Area of inscribed rectangles is less than area of region.

Area of region

Figure 5.11

Area of circumscribed rectangles is greater than area of region.

Theorem: Limits of the Lower and Upper Sums Let f be continuous and nonnegative on the interval $[a, b]$. The limits as $n \rightarrow \infty$ of both the lower and upper sums exist and are equal to each other. That is,

$$
\begin{aligned}
\lim _{n \rightarrow \infty} s(n) & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(m_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(M_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} S(n)
\end{aligned}
$$

where $\Delta x=\frac{b-a}{n}$ and $f\left(m_{i}\right)$ and $f\left(M_{i}\right)$ are the minimum and maximum values of f on the subinterval.

Example 4:
a. Find the upper sum from $x=2$ to $x=6$.

$a=2, b=6, n=8$, so $\Delta x=\frac{b-a}{n}=\frac{6-2}{8}=\frac{1}{2}$
Area $=\sum_{i=1}^{n} f\left(M_{i}\right) \Delta x$

$$
=\frac{1}{2} \sum_{i=1}^{\infty} f\left(M_{i}\right)
$$

$$
=\frac{1}{2}(f(2.5)+f(3)+f(3.5)
$$

$$
+f(4)+f(4)+f(4.5)
$$

$$
+f(5)+f(5.5))
$$

$$
=\frac{1}{2}(2.75+4+4.75+5
$$

$$
+5+4.75+4+2.75)
$$

$$
=16.5 \text { sq.units }
$$

$$
\text { Area } \approx[S(n)+S(n)] \cdot \frac{1}{2}
$$

6. Find the lower sum from $x=2$ to $x=6$.

$$
\begin{aligned}
& \text { Area }= \sum_{i=1}^{n} f\left(m_{i}\right) \Delta x \\
&= \sum_{i=1}^{8} f\left(m_{i}\right) \frac{1}{2} \\
&= \frac{1}{2} \sum_{i=1}^{8} f\left(m_{i}\right) \\
&= \frac{1}{2}[f(2)+f(2.5)+f(3)+f(3.5) \\
& f\left(\frac{3.5}{}\right)+f(4.5)+f(5)+f(5.5) \\
&\quad+f(6)] \\
&=\frac{1}{2}(1+2.75+4+4.75+4.75 \\
&\quad+4+2.75+1) \\
& 18.5 \text { sq. units }
\end{aligned}
$$

Definition of an Area in the Plane
Let f be continuous and nonnegative on the interval $[a, b]$. The area of the region bounded by the graph of f, the x-axis, and the vertical lines $x=a$ and $x=b$ is

$$
\mathcal{A r e a}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x, \quad x_{i-1} \leq c_{i} \leq x_{i} \quad \text { where } \Delta x=\frac{b-a}{n}
$$

right endpoint: $c_{i}=a+i \Delta x$, left endpoint: $c_{i}=a+(i-1) \Delta x$
Example 5: Find the are a of the region bounded by the graph $f(x)=x^{3}$, the x-axis, and the vertical lines $x=0$ and $x=1$.

$$
\begin{aligned}
& a=0, b=1 \\
& \Delta x=\frac{b-a}{n}=\frac{1-0}{n}=\frac{1}{n}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area } & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(c_{i}\right) \Delta x \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left(\frac{i^{3}}{n^{3}}\right)\left(\frac{1}{n}\right) \\
& =\lim _{n \rightarrow \infty} \frac{1}{n^{4}} \sum_{i=1}^{n} i^{3} \\
= & \lim _{n \rightarrow \infty} \frac{1}{n^{3 / 2}} \cdot \frac{n^{2}(n+1)^{2}}{4} \\
= & \lim _{n \rightarrow \infty} \frac{n^{2}+2 n+1}{4 n^{2}} \\
= & \lim _{n \rightarrow \infty}\left(\frac{1}{4}+\frac{1}{2 n}+\frac{1}{4 n^{2}}\right) \\
= & \frac{1}{4}+0+0 \\
= & \frac{1}{4} s q \cdot \text { unit }
\end{aligned}
$$

