When you finish your homework you should be able to...

- $\pi~$ Use Sigma Notation to Write and evaluate a Sum
- $\pi~$ Understand the Concept of Area
- π Approximate the Area of a Plane Region
- $\pi~$ Find the Area of a Plane Region Using Limits

Warm-up: Evaluate the following limits.

1.
$$\lim_{x \to \infty} \frac{25x^2 - 5x + 3}{x^2} = 25$$

2.
$$\lim_{x \to \infty} \left(\frac{2x^3 + 6x^2}{3x^3} + 10 \right) = \frac{2}{3} + 10$$

$$= \frac{32}{3}$$

SIGMA NOTATION

The sum of *n* terms a_1, \ldots, a_n is written as $\sum_{i=1}^n a_i = a_1 + a_2 + a_3 + \cdots + a_n$ where i is the **index of summation**, a_i is the **ith term** of the sum, and the **upper and lower bounds of summation** are *n* and 1.

Example 1: Find the sum.

c.
$$\sum_{i=1}^{3} \sqrt{i}$$
$$= \sqrt{1} + \sqrt{2} + \sqrt{3}$$

Summation Properties

1.
$$\sum_{i=1}^{n} ka_{i} = k \sum_{i=1}^{n} a_{i}$$
2.
$$\sum_{i=1}^{n} (a_{i} \pm b_{i}) = \sum_{i=1}^{n} a_{i} \pm \sum_{i=1}^{n} b_{i}$$
Example 2: Find the sum.
a.
$$\sum_{i=1}^{4} 2$$

$$= 2 + 2 + 2 + 2$$

$$= 2 + 4$$

$$= \sqrt{2}$$
Theorem: Summation Formulas
1.
$$\sum_{i=1}^{n} c = cn$$
2.
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$
3.
$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6}$$
4.
$$\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$$
Function Formulas
(name of the sum of th

Example 3: Evaluate the following sums.

Area

In Euclidean geometry, the simplest type of plane region is a <u>rectangle</u>. The definition for the area of a rectangle is <u>A=bh</u>. From this definition, you can develop formulas for the areas of many other plane regions such as triangles. To determine the area of a triangle, you can form a <u>vectangle</u> whose area is <u>functe</u> that of the <u>friangle</u>. Once you know how to find the area of a triangle, you can determine the area of any <u>polygon</u> by subdividing the polygon into <u>triangular</u> regions.

Figure 5.6

Finding the areas of regions other than polygons is more difficult. The ancient Greeks were able to determine formulas for the areas of some general regions by the <u>______hausfion</u>_____ method. Essentially, the method is a <u>______hiniting</u>______ process in which the area is <u>______end____</u>__ between two polygons—one <u>_______hscribed</u>______ in the region and one <u>______scribed</u>______ about the region.

ARCHIMEDES (287-212 B.C.)

Archimedes used the method of exhaustion to derive formulas for the areas of ellipses, parabolic segments, and sectors of a spiral. He is considered to have been the greatest applied mathematician of antiquity.

See LarsonCalculus.com to read more of this biography.

The exhaustion method for finding the area of a circular region **Figure 5.7**

 $s(n) \leq (\text{Area of region}) \leq S(n)$

Area of region

Area of circumscribed rectangles is greater than area of region.

Area of inscribed rectangles is less than area of region.

Figure 5.11

Theorem: Limits of the Lower and Upper Sums

Let f be continuous and nonnegative on the interval [a,b]. The limits as $n \to \infty$ of both the lower and upper sums exist and are equal to each other. That is,

$$\lim_{n \to \infty} s(n) = \lim_{n \to \infty} \sum_{i=1}^{n} f(m_i) \Delta x$$
$$= \lim_{n \to \infty} \sum_{i=1}^{n} f(M_i) \Delta x$$
$$= \lim_{n \to \infty} S(n)$$

where $\Delta x = \frac{b-a}{n}$ and $f(m_i)$ and $f(M_i)$ are the minimum and maximum values of f on the subinterval.

Example 4:

- a. Find the upper sum from
 - x = 2 to x = 6.

b. Find the lower sum from

x = 2 to x = 6.

Definition of an Area in the Plane

Let f be continuous and nonnegative on the interval [a,b]. The area of the region bounded by the graph of f, the x-axis, and the vertical lines x = a and x = b is $\operatorname{Area} = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x, \quad x_{i-1} \leq c_i \leq x_i \qquad \text{where } \Delta x = \frac{b-a}{n},$

right endpoint: $c_i = a + i\Delta x$, left endpoint: $c_i = a + (i-1)\Delta x$

Example 5: Find the area of the region bounded by the graph $f(x) = x^3$, the *x*-axis, and the vertical lines x = 0 and x = 1.

Area =
$$\lim_{n \to \infty} \sum_{i=1}^{n} f(c_i) \Delta x$$

= $\lim_{n \to \infty} \sum_{i=1}^{n} (\frac{1}{n^3}) (\frac{1}{n})$
= $\lim_{n \to \infty} \frac{1}{n^4} \sum_{i=1}^{n^3} \frac{1}{n^3}$
= $\lim_{n \to \infty} \frac{1}{n^4} \sum_{i=1}^{n^3} \frac{1}{n^4}$
= $\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{n^3} \frac{1}{n^2}$
= $\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{n^3} \frac{1}{n^2}$
= $\lim_{n \to \infty} \frac{1}{n^2} \sum_{i=1}^{n^3} \frac{1}{n^2}$
= $\frac{1}{4} + 0 + 0$
= $\frac{1}{4} + \frac{1}{2n} + \frac{1}{4n^2}$

a = 0, b = 1 $\Delta x = \frac{b-a}{n} = \frac{1-0}{n} = \frac{1}{n}$ right endpoint to find C; $a + i \Delta x = 0 + i(A) = \frac{1}{n}$ $f(C;) = f(A) = (A) = (A) = \frac{1}{n^3}$