$\qquad$

## MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Use the graph of the function $f(x)$ to locate the local extrema and identify the intervals where the function is concave up and concave down.
1)

A) Local minimum at $x=3$; local maximum at $x=-3$; concave down on $(-\infty,-3)$ and $(3, \infty)$; concave up on $(-3,3)$
B) Local minimum at $x=3$; local maximum at $x=-3$; concave up on $(-\infty,-3)$ and $(3, \infty)$; concave down on $(-3,3)$
C) Local minimum at $x=3$; local maximum at $x=-3$; concave up on $(0, \infty)$; concave down on $(-\infty, 0)$
D) Local minimum at $x=3$; local maximum at $x=-3$; concave down on $(0, \infty)$; concave up on $(-\infty, 0)$

## Solve the problem.

2) From a thin piece of cardboard 10 in . by 10 in ., square corners are cut out so that the sides can be
3) $\square$
4) $($
 folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume? Round to the nearest tenth, if necessary.
A) $6.7 \mathrm{in} . \times 6.7 \mathrm{in} . \times 3.3 \mathrm{in}$.; $148.1 \mathrm{in}^{3}$
B) 5 in. $\times 5$ in. $\times 2.5$ in.; $62.5 \mathrm{in}^{3}$
C) $6.7 \mathrm{in} . \times 6.7 \mathrm{in} . \times 1.7 \mathrm{in}$.; $74.1 \mathrm{in}^{3}$
D) 3.3 in. $\times 3.3$ in. $\times 3.3$ in.; $37 \mathrm{in}^{3}$
5) ${ }^{2}$ From a thin piece of cardboard 10 in . by 10 in ., square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a box of maximum volume? What is the maximum volume? Round to the nearest tenth, if necessary.
(1) Analysed

(2) Primary Equation

$$
V(x)=(10-2 x)^{2} x
$$

(3) Reduce Primary

Mready dorcas
(4) Domain

$$
\begin{aligned}
& x>0,10-2 x>0 \\
& 10>2 x \\
& 5>x \\
& 0<x<5
\end{aligned}
$$

(1) Conclusion

$$
\begin{aligned}
& x \doteq 1.7 \\
& 10-2 x \doteq 10-2(1.7)=6.6
\end{aligned}
$$

Dimension that yield the max. volume are 6.6 in $\times 6.6$ in $\times 1.7 \mathrm{in}$.

$$
\text { Max Vol }=76.3 \mathrm{in}^{3}
$$

(5) optimize

$$
\begin{aligned}
& \text { i) }\left(V^{\prime}(x)=2(10-2 x) \cdot(-2) \cdot x+(10-2 x)^{2} \cdot 1\right. \\
& V^{\prime}(x)=(10-2 x)[-4 x+(10-2 x)]
\end{aligned}
$$

$$
V^{\prime}(x)=(10-2 x)(-6 x+10)
$$

$$
V^{\prime}(x)=2(5-x)[-2(3 x-5)
$$

$$
V^{\prime}(x)=-4(5-x)(3 x-5)
$$

$$
0=5-x \text { or } \theta=3 x-5
$$

$$
x=\frac{5}{3} \approx 1.7
$$

ii) verify that $x=1.4$ yields a rel. max


Find all horizontal asymptotes of the given function, if any.
3) $h(x)=\frac{8 x^{3}-3 x}{9 x^{3}-6 x+7}$
3)

A) $y=\frac{1}{2}$
B) $y=0$
C) $y=\frac{8}{9}$
D) no horizontal asymptotes

Solve the problem.
4) A rectangular field is to be enclosed on four sides with a fence. Fencing costs $\$ 4$ per foot for two opposite sides, and $\$ 7$ per foot for the other two sides. Find the dimensions of the field of area 740 $\mathrm{ft}^{2}$ that would be the cheapest to enclose.
Opmalynio
Let $\times$ be the ${ }^{\text {fin } / \text { Pt fining length }}$
(4) Canchaion Let be they ${ }^{34}$ is forcing engin $\quad x=\frac{70}{56} \equiv 20.6$

(2 )Primary Equation

$$
C(x, y)=14 x+8 y
$$

(3) Reduce Primary

$$
\left.C(y)=14\left(\frac{740}{y}\right)+8 y\right)
$$


A) $15.5 \mathrm{ft} @ \$ 4$ by $47.6 \mathrm{ft} @ \$ 7$
B) $20.6 \mathrm{ft} @ \$ 4$ by $36 \mathrm{ft} @ \$ 7$
C) $36 \mathrm{ft} @ \$ 4$ by $20.6 \mathrm{ft} @ \$ 7$
D) $47.6 \mathrm{ft} @ \$ 4$ by $15.5 \mathrm{ft} @ \$ 7$

Answer Key
Testname: M150_Q4_3,4,3,5,3.7

1) $C$
2) $C$
3) $C$
4) C
