MATH $150 /$ GRACE Y
EXASM 3/PART 2/50 PO INNS POSS IBLE
$\mathcal{G R A P H I N G}$ CALCULATOR PERMIT IED
(8 POINNTS) Match the graph of f in the left column with that of its derivative in the right column.

3.

4.

GRAPH $O \mathcal{F} f^{\prime}$
a.

,

6.

c.

1.
2.
3.
4.

a
\qquad
5. (8 points) else calculus to find the absolute extreme values of the function and the ordered pairs where they occur. You may round to the nearest hundredth.

$$
\begin{aligned}
& f(x)=x \tan x \text { on the interval }\left[\frac{\pi}{6}, \frac{\pi}{3}\right] \\
& f^{\prime}(x)=\tan x+x \sec ^{2} x \\
& 0=\tan x+x \sec ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
& x=0 \quad \text { minimum: }(\pi / 6, \pi \sqrt{3} / 18) \approx(0.52,0.30) \\
& \notin[\pi / \pi / 3] \text { maximum: }(\pi / 3, \pi \sqrt{3} / 3) \approx(1.05,1.81) \\
& f(\pi / 6)=\frac{\pi}{6}(\tan (\pi / 6))=\frac{\pi}{6}\left(\frac{\sqrt{3}}{3}\right)=\frac{\pi \sqrt{3}}{18} \\
& f(\pi / 3)=\frac{\pi}{3}(\tan (\pi / 3))=\frac{\pi}{3}(\sqrt{3})=\frac{\pi \sqrt{3}}{3} \\
& \text { no crit.形s }
\end{aligned}
$$

6. (5 points) Determine whether the Mean Value Theorem can be applied to $f(x)=|x|+6$ on the closed interval $[-2,5]$. If so, find all values of c such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

not
differentiable

$$
\begin{aligned}
& \text { not } \\
& \text { differentiable } \\
& \text { at } x=0 \begin{array}{l}
\text { so un pear } \\
\begin{array}{l}
\text { sorer incr app ied } \\
\text { value cannot be }
\end{array} \\
x^{3}-x^{2}-4 x+4
\end{array}
\end{aligned}
$$

7. (10 points) Consider the function $f(x)=\frac{x^{3}-x^{2}-4 x+4}{x^{2}-1}$.

$$
\begin{aligned}
& f(x)=\frac{x^{2}(x-1)-4(x-1)}{(x+1)(x-1)} \\
& f(x)=\frac{\left(x^{2}-4\right)(x-1)}{(x+1)(x-1)}
\end{aligned}
$$

$$
\text { (1) } f(x)=\frac{x^{2}-4}{x+1}
$$

a. (2 PO INXIS) List excluded domain values, and describe what they represent on the graph.
$x \neq \pm 1$ As $x=-1$, there is a vertical asymptote
6. (8 PO INNS) Use calculus to find the points of inflection and discuss the concavity of the

$$
\begin{aligned}
& f(x)=\frac{x^{2}-4}{x+1} \\
& f^{\prime}(x)=\frac{2 x(x+1)-\left(x^{2}-4\right)(1)}{(x+1)^{2}} \\
& f^{\prime}(x)=\frac{2 x^{2}+2 x-x^{2}+4}{(x+1)^{2}} \\
& f^{\prime}(x)=\frac{x^{2}+2 x+4}{(x+1)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { the points of infle e ion and dis cuss the concavity of the } \\
& f^{\prime \prime}(x)=\frac{\left.(2 x+2)(x+1)^{x}-\left(x^{2}+2 x+4\right)[2(x) 1)(1)\right]}{(x+1)^{43}}
\end{aligned}
$$

$$
f^{\prime \prime}(x)=\frac{2 x^{2}+4 x+2-2 x^{2}-4 x-8}{(x+1)^{3}}
$$

$$
f^{\prime \prime}(0)=-6<0
$$

8. (4 points) Use calculus to find all points where relative extrema occur. Exact answers only.

$$
\begin{gathered}
f(x)=x^{5}+5 x^{3}-24 \\
f^{\prime}(x)=5 x^{4}+15 x^{2} \\
0=5 x^{2}\left(x^{2}+3\right) \\
5 x^{2}=0 \text { or } x^{2}+3=0 \\
x=0 \quad \text { imaginary }
\end{gathered}
$$

$$
f^{\prime \prime}(x)=20 x^{3}+30 x
$$

$f^{\prime \prime}(0)=0$ so Ind deriv. test does not apply

$$
c=0
$$

$$
\begin{aligned}
& f^{\prime}(-1)=5+15>0 \\
& f^{\prime}(1)=5+15>0
\end{aligned}
$$

9. (5 poivics) Use differentials to approximate the value of the expression $\sqrt{35.5}$.

$$
\begin{array}{rlrl}
f(x+\Delta x) & \approx f(x)+f^{\prime}(x) d x & \Delta x=d x=-0.5 \\
f(36+(-0.5)) & \approx f(36)+f^{\prime}(36)(-0.5) & f(x)=\sqrt{x} \\
& =\sqrt{36}-\frac{0.5}{2 \sqrt{36}} & f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \\
& =6-\frac{0.5}{2 \cdot 6} & \\
& =6-\frac{1}{24} & \\
& =\frac{144}{24}-\frac{1}{24} & & \\
& =\frac{143}{24} &
\end{array}
$$

10. (10 PO INNS $)$ The sum of the perimeters of an equilateral triangle and a square is 16 . Find the dimensions of the triangle and the square that produce a minimum total area (The shapes are not attached). Let x represent the measure of the length of each side of the triangle and let $y \quad 2 \cdot 4 \cdot \frac{3}{4}$ represent the measure of each edge of the square. You must use calculus! \qquad
\rightarrow a. Analysis (1 POINTS)

$$
A_{B}=\frac{1}{2}(x)\left(\frac{x}{2}\right)=\frac{(x)}{4}
$$

$$
16=3 x+4 y \rightarrow y=4-\frac{3}{4} x
$$

6. Primary Equation (1 POI $\mathcal{N}(\mathcal{L S}$)

$$
A(x, y)=\frac{\sqrt{3}}{4} x^{2}+y^{2}
$$

$$
\begin{array}{ll}
\text { d. Feasible Domain } & \\
x>0, y>0 & 0<x<\frac{16}{3} \\
4-\frac{3}{4} x>0 & \\
-\frac{3}{4} x>-4 & \\
x<\frac{16}{3} &
\end{array}
$$

y equation as a

$$
A(x)=\frac{\sqrt{3}}{4} x^{\text {fun ct }}+\left(4-\frac{3}{4} x\right)^{2}
$$

$$
A(x)=\frac{\sqrt{3}}{4} x^{2}+\frac{9}{16} x^{2}-6 x+16
$$

e. Minimize
i. Find critical number (s). You must use calculus to find the derivative. You may use your graphing calculator to approximate the zeros) to the nearest tenth, if necessary. (3 POINLS)

$$
\left.\begin{array}{rl}
A^{\prime}(x) & =\frac{\sqrt{3}}{2} x+\frac{9}{8} x-6 \\
0 & =\left(\frac{\sqrt{3}}{2}+\frac{9}{8}\right) x-6 \\
6 & \approx 1.99 x
\end{array}\right\} \begin{aligned}
& x \approx 3.0 \\
& c
\end{aligned}
$$

ii. Use the $1^{\text {st }}$ or $2^{\text {nd }}$ derivative test to verify that the critical number produces a relative minimum. Show all steps as we did in class! (2 POINNS)

$$
A^{\prime \prime}(x)=\frac{\sqrt{3}}{2}+\frac{9}{8}>0
$$

So $A^{\prime \prime}(3)>0$ which implies that at $x \approx 3$ there's a relative minimum.
iii. Find y. (1 POI V(T)

$$
\begin{aligned}
& \text { iii. Sind y.(1 (qu IV (T) } \\
& y=4-\frac{3}{4} x \rightarrow y \approx 4-\frac{3}{4}(3.0) \rightarrow y \approx 1.8
\end{aligned}
$$

f. Conclusion in words. (1 POI N(T)

An equilateral triangle whose sides meaoure approximately 3.0 units and a square whose side measure approximately 1.8 units produce the minimum area.

