\qquad
EX AM $2 /$ CHAPTER 2
100 POINTS POSS IBLE/BOX YOUR FIX NL $\mathcal{A N S}$ FER
$\mathcal{H O} \mathcal{W} \operatorname{ALL} \mathcal{W} O$ RX $\mathcal{F O}$ R FULL $\mathcal{C R E D I T}$!!!

1. (5 POINNS)

The equation gives the position $s=f(t)$ of a body moving on a coordinate line (s in meters, t in seconds).
$\mathrm{s}(\mathrm{m})$

On (1,2), the body is at rest.

On what intervals) is the body at rest?
(48 POINNTS) Problems 2-7. Find the derivative of the functions below with respect to the independent variable. Each item is worth 8 points. EXACT, FULLY SIMPLIFIED $\mathcal{A N S} \mathcal{W E R S} O \mathcal{N L Y ! ! ! ~ T h i s ~ m e a n s ~ a ~ s i n g l e ~ r a t i o n a l e x p r e s s i o n ~ w h i c h ~ h a s ~} \mathcal{N O} \operatorname{CO} \mathcal{M P L E X}$ $\mathcal{F R A C T I O N S}$ or negative powers.

$$
\begin{aligned}
& \text { 2. } f(x)=\frac{2 x^{3}+4 x^{2}-x-2}{x+2} \\
& \text { easy way: } f(x)=\frac{2 x^{2}(x+2)-1(x+2)}{x+2} \\
& f(x)=\frac{(x+2)\left(2 x^{2}-1\right)}{x+2} \quad f^{\prime}(x)=\frac{\left.4 x^{3}+16 x^{2}+16 x+2\right)^{2}}{(x+2)^{2}} \\
& f^{\prime}(x)=\frac{\left(6 x^{2}+8 x-1\right)(x+2)-\left(2 x^{3}+4 x^{2}-x-2\right)(1)}{(x+2)^{2}} \\
& f(x)=2 x^{2}-1 \quad f^{\prime}(x)=\frac{4 x\left(x^{2}+4 x+4\right)}{(x+2)^{2}} \quad f^{\prime}(x)=4 x \\
& f^{\prime}(x)=4 x \quad
\end{aligned} \quad \begin{aligned}
& f^{\prime}(x)=\frac{4 x(x+2)^{2}}{(x+2)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. } y=\tan ^{2}(3 x) \\
& \frac{d y}{d x}=2(\tan 3 x)^{\prime} \cdot \frac{\partial}{d x}(\tan 3 x) \\
& \frac{d y}{d x}=(2 \tan 3 x)\left(\sec ^{2} 3 x\right) \frac{\partial}{d x}(3 x) \\
& \frac{d y}{d x}=(2 \tan 3 x)\left(\sec ^{2} 3 x\right)(3) \\
& \frac{d y}{d x}=6 \tan 3 x \sec ^{2} 3 x
\end{aligned}
$$

$$
\begin{aligned}
& h^{\prime}(t)=\frac{\left(-\frac{1}{2} t^{-1 / 2}\right)\left(5+t^{1 / 2}\right)-\left(5-t^{1 / 2}\right)\left(\frac{5-\sqrt{t}}{5+\sqrt{t}} t^{-1 / 2}\right)}{\left(5+t^{1 / 2}\right)^{2}} \\
& h^{\prime}(t)=\frac{-\frac{1}{2} t^{-1 / 2}\left[\left(5+t^{1 / 2}\right)+\left(5-t^{\prime / 2}\right)\right]}{\left(5+t^{1 / 2}\right)^{2}} \\
& h^{\prime}(t)=\frac{-10}{5 t^{1 / 2}\left(5+t^{1 / 2}\right)^{2}} \\
& h^{\prime}(t)=-\frac{5}{t^{1 / 2}\left(5+t^{1 / 2}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=\left(x^{3}-1\right)^{40} \\
& f^{\prime}(x)=40\left(x^{3}-1\right)^{39} \frac{\partial}{x}\left(x^{3}-1\right) \\
& f^{\prime}(x)=40\left(x^{3}-1\right)^{39}\left(3 x^{2}\right) \\
& f^{\prime}(x)=120 x^{2}\left(x^{3}-1\right)^{39}
\end{aligned}
$$

$$
\begin{array}{ll}
& 6 . \quad y=x(4-x)^{1 / 3} \\
\frac{\partial y}{\partial x}=\left((4-x)^{1 / 3}+x\left[\frac{1}{3}(4-x)^{-2 / 3} \frac{\partial}{\partial x}(4-x)\right]\right. \\
\frac{\partial y}{\partial x}=(4-x)^{1 / 3}+x\left[\frac{1}{3}(4-x)^{-2 / 3}(-1)\right] \\
\frac{\partial y}{\partial x}=\frac{1}{3}(4-x)^{-2 / 3}[3(4-x)-x] & \frac{d y}{\partial x}=\frac{12-4 x}{3(4-x)^{2 / 3}} \\
\frac{d y}{d x}=\frac{12-3 x-x}{3(4-x)^{2 / 3}} & \frac{d y}{d x}=\frac{4(3-x)}{3(4-x)^{2 / 3}}
\end{array}
$$

$$
\begin{gathered}
\text { ear way: } \\
f(\theta)=
\end{gathered}
$$

$$
\text { hard way: } f^{\prime}(\theta)=\frac{(2 \cos 2 \theta(\sin \theta)-(\sin 2 \theta)(\cos \theta)}{(\sin \theta)^{2}}
$$

$$
f(\theta)=\frac{2 \sin \theta \cos \theta}{\sin \theta}
$$

$$
\begin{aligned}
& f^{\prime}(\theta)=\frac{\left.2\left(2 \cos ^{2} \theta-1\right) \sin \theta-2 \sin \theta\right)^{2}}{\sin ^{2} \theta} \\
& f^{\prime}(\theta)=2 \cos \theta \cos \theta \\
& \left.2 \cos ^{2} \theta-1-\cos ^{2} \theta\right)
\end{aligned}
$$

$$
f(\theta)=2 \cos \theta
$$

$$
f^{\prime}(\theta)=-2 \sin \theta
$$

$$
\begin{aligned}
& f^{\prime}(\theta)=\frac{2 \sin \theta\left(2 \sin ^{2} \theta-1-\cos ^{2} \theta\right)}{\sin ^{2} \theta} \\
& f^{\prime}(\theta)=\frac{2\left(\cos ^{2} \theta-1\right)}{\sin \theta} \\
& f^{\prime}(\theta)=\frac{-2\left(1-\cos ^{2} \theta\right)}{\sin \theta} \quad\left[\begin{array}{l}
f^{\prime}(\theta)=\frac{-2 \sin ^{2} \theta}{\sin \theta}
\end{array}\right] \quad f^{\prime}(\theta)=-2 \sin \theta
\end{aligned}
$$

$$
\begin{aligned}
& \text { 8. } \partial(10 \text { POI } \mathcal{N}(\mathcal{T} \mathcal{S}) \text { Find the derivative with respect to } x \text {. } \\
& \frac{\partial}{\partial x} \sin (x y) \frac{{ }^{2}}{j} \sin (x+y) \\
& \cos (x y) \frac{\partial}{\partial x}(x y)=\cos (x+y) \frac{\partial}{\partial x}(x+y) \\
& (\cos x y)\left(1 y+x \frac{\partial y}{\partial x}\right)=(\cos (x+y))\left(1+\frac{\partial y}{\partial x}\right) \\
& y \cos x y+x \frac{d y}{d x} \cos x y=\cos (x+y)+\frac{d y}{d x} \cos (x+y) \\
& x \frac{d y}{d x} \cos x y-\frac{d y}{d x} \cos (x+y)=\cos (x+y)-y \cos x y \\
& \frac{d y}{d x}\left(x \cos x y-\frac{\cos (x+y)=\cos (x+y)-y \cos x y}{d y}\right. \\
& \frac{d y}{d x}=\frac{\cos (x+y)-y \cos x y}{x \cos x y-\cos (x+y)}
\end{aligned}
$$

9. (8 POIN(IS) Find the x-value (s) which yield horizontal tangent lines if $f(x)=2 x^{5}-8 x^{3}+2$. Do not use your graphing calculator.

$$
\begin{aligned}
& f^{\prime}(x)=10 x^{4}-24 x^{2} \\
& 0=2 x^{2}\left(5 x^{2}-12\right) \\
& 2 x^{2}=0 \text { or } 5 x^{2}-12=0 \\
& \sqrt{x^{2}}=\sqrt{0} \\
& x=0 \\
& \begin{array}{l}
5 x^{2}=12 \\
\sqrt{x^{2}}=\sqrt{12 / 5}
\end{array} \\
& x= \pm \sqrt{\frac{12}{5}} \\
& x= \pm \frac{2 \sqrt{3}}{\sqrt{5}} \text { or } x= \pm \frac{2 \sqrt{15}}{5}
\end{aligned}
$$

$$
\text { 部.5. } \begin{aligned}
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{\frac{1}{x+\Delta x}-\frac{1}{x}}{\Delta x} \\
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{x-(x+\Delta x)}{x(x+\Delta x)} \cdot \frac{1}{\Delta x} \\
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{\Delta x}{x \Delta x(x+\Delta x)} \\
f^{\prime}(x) & =\lim _{\Delta x \rightarrow 0} \frac{1}{x(x+\Delta x)} \\
f^{\prime}(x) & \stackrel{D . S .}{=} \frac{1}{x(x+0)} \\
f^{\prime}(x) & =\frac{1}{x^{2}}
\end{aligned}
$$

11. (9 POI NTIS) A spherical balloon is inflated with helium at the rate of $100 \pi \mathrm{ft}^{3} / \mathrm{min}$. How fast is the balloon's radius increasing at the instant the radius is 5 ft ? (Given: $V=\frac{4}{3} \pi r^{3}$) $\quad \frac{d V}{d t}=100 \pi \mathrm{ft}^{3} / \mathrm{min}$

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
\frac{\partial}{\partial t} V & =\frac{\partial}{\partial t}\left(\frac{4}{3} \pi r^{3}\right) \\
\frac{\partial V}{\partial t} & =\frac{4 \pi}{3} \hbar(r)^{2} \frac{\partial}{\partial t}(r) \\
\frac{\partial V}{\partial t} & =4 \pi r^{2} \frac{\partial r}{\partial t}
\end{aligned}
$$

12. (12 POIN(TS) Find the equation (s) of the tangent line (s) to the graph of the ellipse $x^{2}+2 y^{2}=17$ at $x=3$. Please give the line ar equations) in the point.
Slop y slope form of the line.

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(x^{2}+2 y^{2}\right)=\frac{\partial}{\partial x}(17) \\
& 2 x+2\left[2(y)^{\prime} \frac{\partial}{\partial x}(y)\right]=0
\end{aligned}
$$

$$
\frac{y \text {-100rd }}{}
$$

$$
(3)^{2}+2 y^{2}=17
$$

$$
\begin{aligned}
9+2 y^{2} & =17 \\
2 & =8
\end{aligned}
$$

$$
\begin{aligned}
& 2 y^{2}=8 \\
& \sqrt{y^{2}}=\sqrt{4}
\end{aligned}
$$

$$
y= \pm 2
$$

$$
\left(\begin{array}{l}
\text { At }(3,-2): \\
\frac{\partial y}{\partial x}=-\frac{3}{2(-2)}=\frac{3}{4} \\
y+2=\frac{3}{4}(x-3) \\
\text { At }(3,2): \\
\frac{\partial y}{\partial x}=-\frac{3}{2(2)}=-\frac{3}{4} \\
y-2=-\frac{3}{4}(x-3)
\end{array}\right.
$$

