# CALCULUS I/MATH 150 SHANNON GRACEY 

$\pi 100 \operatorname{PO} I \mathcal{N T S}$ POSSIBLE<br>$\pi$ YOUR WO RKMUS T S UPPO RI YOUR ANS WER FOR FULL $\mathcal{C R E D I T} \mathcal{T O} \mathcal{B E} \mathcal{A} W \mathcal{A R D E D}$<br>$\pi \mathcal{Y O U} \mathfrak{M A Y}$ USS $\mathcal{A} \mathcal{T} I-83 / 84 / 85 / 86$ CALCULATOR<br>$\pi \mathcal{P R O V I D E ~ E X A C T ~ A N S ~ W E R S ~ U N L E S S ~ O T H E R W I S E ~}$ INDICATED

 PROCTO RING CENNIER UNNI I YO U ARE FINIS HED..I HIS $\mathcal{M E A N} S \mathcal{N} O \mathcal{B A T H} \mathcal{H} O O \mathcal{M} \mathcal{B R E A K S}$ !
(64 POI $\mathcal{N T S}$ ) Problems 1-8. Evaluate the definite integrals and find the indefinite integrals: Eacf question is worth 8 points. EX ACT $\mathcal{A N S} \mathcal{W} \mathcal{E R S} O \mathcal{N L} \mathcal{Y}!!!$

1. $\int_{2}^{6}|x-3| d x$
2. $\int \frac{2 \theta^{2}}{\sin ^{2} \theta^{3}} d \theta$
3. $\int \frac{x}{\sqrt{1-x}} d x$
4. $\int\left(1+x^{2}\right)^{3} d x$
5. $\int \cos ^{2} 5 x d x$
6. $\int\left(\frac{4 x+x^{3 / 4}}{x^{1 / 4}}\right) d x$
7. $\int_{3}^{5} \frac{x^{3}+1}{x+1} d x$
8. $\int_{\pi / 4}^{\pi / 3} \tan ^{3} x \sec ^{2} x d x$
9. (5 POINNTS) Find the ave rage value of the function $f(x)=\frac{4}{x^{2}}$ on the interval $[1,4]$.
10. (5 POINNS ) Sketch the region whose area is given by the definite integral. Then use a geometric formula to evaluate the integral. $\int_{0}^{2} 3 x d x$.

11. (6 PO INNTS ) Use differentials to approximate the value of the expression $\sqrt[3]{64.5}$.
12. (10 POIN(IS) Evaluate the definite integralby the limit definition. $\int_{1}^{3}\left(x^{2}\right) d x$
13. 

(10 POINNS ) From a thin piece of cardboard 10 in . $6 y 10$ in., square corners are cut out so that the sides can be folded up to make a box. What dimensions will yield a 6 ox of maximum volume? You must use calculus to solve; include your analysis, optimization, and verific ation-no credit awarded for trial and error! Round to the nearest tenth, if necessary.

Theorem: Summation Formulas

1. $\quad \sum_{i=1}^{n} c=c n$
2. $\sum_{i=1}^{n} i=\frac{n(n+1)}{2}$
3. $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$
4. $\sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$
