Section 5.1: ADDING AND SUBTRACTING POLYNOMIALS

When you are done with your homework you should be able to ...

- π Understand the vocabulary used to describe polynomials
- π Add polynomials
- π Subtract polynomials
- π Graph equations defined by polynomials of degree 2

WARM-UP:

Simplify:

 $-6x+5y-2x^2-2y+x^2$

DESCRIBING POLYNOMIALS

THE DEGREE OF ax^n

Example 1: Identify the terms of the polynomial and the degree of each term.

a.
$$-4x^5 - 13x^3 + 5$$
 b. $-x^2 + 3x - 7$

Example 2: Find the degree of the polynomial.

a.
$$5x^2 - x^8 + 16x^4$$
 b. -2

 Recall that ______ are terms containing ______ the

 same ______ to the ______ powers. ______ are added

by _____

Example 3: Add the polynomials.

a. (8x-5)+(-13x+9)

b.
$$(7y^3+5y-1)+(2y^2-6y+3)$$

c.
$$\left(\frac{2}{5}x^4 + \frac{2}{3}x^3\frac{5}{8}x^2 + 7\right) + \left(-\frac{4}{5}x^4 + \frac{1}{3}x^3 - \frac{1}{4}x^2 - 7\right)$$

d.

$$7x^2 - 5x - 6$$
$$-9x^2 + 4x + 6$$

MATH 830/GRACEY			5.1	
SUBTRACTING POLYNOMIALS				
We	_ real numbers by	the	of	
the number being	Subtraction of polynomials also involves			
	If the sum of tw	o polynomials is	, the	
polynomials are	of	each other.		

Example 4: Find the opposite of the polynomial.

a. x+8 b. $-12x^3 - x + 1$

SUBTRACTING POLYNOMIALS

То	two polynomials,	the first polynomial and the
	of the second polynomia	l

Example 5: Subtract the polynomials.

a.
$$(x-2)-(7x+9)$$

b.
$$(3x^2 - 2x) - (5x^2 - 6x)$$

c.
$$\left(\frac{3}{8}x^2 - \frac{1}{3}x - \frac{1}{4}\right) - \left(-\frac{1}{8}x^2 + \frac{1}{2}x - \frac{1}{4}\right)$$

d.

$$3x^{5} - 5x^{3} + 6$$
$$-(7x^{5} + 4x^{3} - 2)$$

GRAPHING EQUATIONS DEFINED BY POLYNOMIALS

Graphs of equations defined by ______ of degree _____ have a

_____ quality. We can obtain their graphs, shaped like

_____ or _____ bowls, using the _____-

_____ method for graphing an equation in two variables.

Example 3: Graph the following equations by plotting points.

a.
$$y = x^2 - 1$$

b. $y = 9 - x^2$

x	$y = 9 - x^2$	(x, y)

