Section 3.3: SLOPE

When you are done with your homework you should be able to...

- π Compute a line's slope
- $\boldsymbol{\pi}$. Use slope to show that lines are parallel
- π Use slope to show that lines are perpendicular
- π Calculate rate of change in applied situations

WARM-UP:

Graph each equation.

a.
$$y-2=0$$

b.
$$-2x-3y=9$$

Х	-2x-3y=9	(x, y)

THE SLOPE OF A LINE

Mathematicians have developed a useful _______ of the ______ of the line. Slope compares the ______ change (the ______) to the _____ change (the _____) when moving from one _____ point to another along the line.

DEFINITION OF SLOPE

The	_ of the line through the	distinct points _	and
is			

where _______. It is common to use the letter _____ to represent the slope of a line. This letter is used because it is the first letter of the French verb monter, meaning to rise, or to ascend.

Example 1: Find the slope of the line passing through each pair of points:

a.
$$(-1,4)$$
 and $(3,-6)$

b.
$$\left(8,\frac{3}{2}\right)$$
 and $\left(-\frac{5}{2},7\right)$

Example 2: Use the graph to find the slope of the line

POSSIBILITIES FOR A LINE'S SLOPE

POSITIVE SLOPE	NEGATIVE SLOPE	ZERO SLOPE	UNDEFINED SLOPE

SLOPE AND PARALLEL LINES

l wo	lines that lie in the same plane are				
	If two lines do not	, the of			
the_	change to the	change is the			
	for each	Because two parallel lines have the same			
, they must have the same					
1.	If two nonvertical lines are	, then they have the same			
2.	2. If two distinct nonvertical lines have the same, then they				
	are				
3.	Two distinct vertical lines, each v	vithslope, are			
	·				
SLOPE AND PERPENDICULAR LINES					
Two	lines that	at a			
() are said to be	·			
1.	If two nonvertical lines are	, then the			
	of their is				
	13				
2.	If the of t	he of two lines is,			
	then the lines are				

3. A _____ slope is

_____ to a vertical line having _____ slope.

Example 3: Determine whether the lines through each pair of points are parallel, perpendicular, or neither.

a.
$$(-2,-15)$$
 and $(0,-3)$; $(-12,6)$ and $(6,3)$

b.
$$(-2,-7)$$
 and $(3,13)$; $(-1,-9)$ and $(5,15)$

c.
$$(-1,-11)$$
 and $(0,-5)$; $(0,-8)$ and $(12,-6)$

MATH 830/GRACEY 3.3

APPLICATION

Construction laws are very specific when it comes to access ramps for the disabled. Every vertical rise of 1 foot requires a horizontal run of 12 feet. What is the grade of such a ramp? Round to the nearest tenth of a percent.