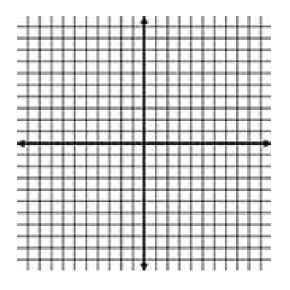
Section 3.2: GRAPHING LINEAR EQUATIONS USING INTERCEPTS

When you are done with your homework you should be able to...

- π Use a graph to identify intercepts
- π Graph a linear equation in two variables using intercepts
- π Graph horizontal or vertical lines

WARM-UP:


Graph the following equations by plotting points.

$$\mathbf{a.} \quad y = -x$$

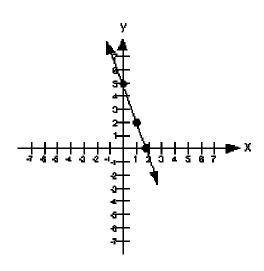
Х	y = -x	(x,y)	

b.
$$y = \frac{2}{3}x - 7$$

х	$y = \frac{2}{3}x - 7$	(x, y)

INTERCEPTS

An ______ of a graph is the ______ of a point where the graph _____ the ____ is always _____!!!


A _____ of a graph is the _____ of a point where the graph _____ the ____ the ____ The ____ the ____ is always ____!!!

Example 1: Use the graph to identify the

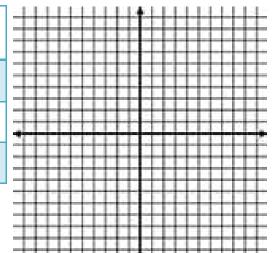
Example 1: Use the graph to identify the

a. x-intercept

b. *y*-intercept

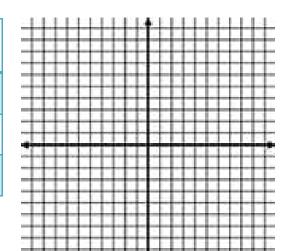
GRAPHING USING INTERCEPTS

An equation of the form ______, where _____, and ____ are integers, is called the _____ form of a line.


STEPS FOR USING INTERCEPTS TO GRAPH Ax + By = C

- 1. Find the _____ and solve for ____.
- 2. Find the _____ and solve for ____.
- 3. Find a checkpoint, a _____ ordered-pair _____.
- 4. Graph the equation by drawing a _____ through the ____ points.

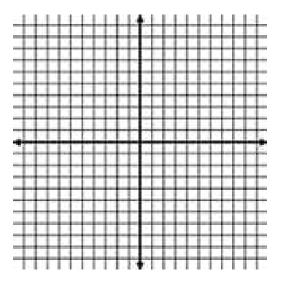
Example 2: Graph using intercepts and a checkpoint.


a.
$$x + y = 6$$

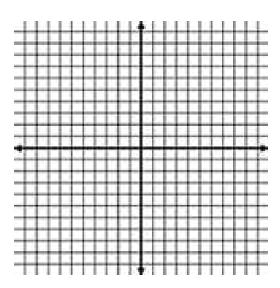
Х	x + y = 6	(x, y)

b.
$$3x - 2y = -7$$

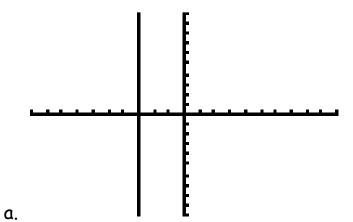
X	3x - 2y = -7	(x, y)

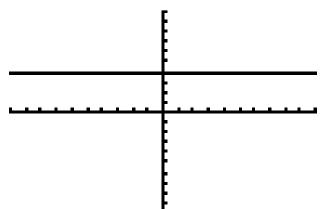

is _____.

EQUATIONS OF HORIZONTAL AND VERTICAL LINES


We know that	is a			
	as long as	and	are not both	What happens
if or	_, but not both,	is zero?		
LADIZANTAL	AND VERTICA	N ITNEC		
			line. The _	
is				
The graph of _	i	s a	line. The _	

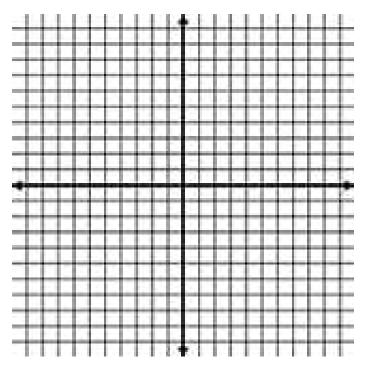
Example 3: Graph.


a.
$$y = 8$$


b.
$$12x = -60$$

Example 4: Write an equation for each graph.

b.



APPLICATION

A new car worth \$24,000 is depreciating in value by \$3000 per year. The mathematical model y = -3000x + 24000 describes the car's value, y, in dollars, after x years.

- a. Find the x-intercept. Describe what this means in terms of the car's value.
- b. Find the y-intercept. Describe what this means in terms of the car's value.

c. Use the intercepts to graph the linear equation.

d. Use your graph to estimate the car's value after five years.