Section 1.7: MULTIPLICATION AND DIVISION OF REAL NUMBERS

When you are done with your homework you should be able to...

- π Multiply real numbers
- π Multiply more than two real numbers
- π Find multiplicative inverses
- π Use the definition of division
- π Divide real numbers
- π Simplify algebraic expressions involving multiplication
- π Determine whether a number is a solution of an equation
- π Use mathematical models involving multiplication and division

WARM-UP:

Find the value of each expression:

1.
$$\frac{9}{10} - \left(\frac{1}{4} - \frac{7}{10}\right)$$

2.
$$-|-8-(-2)|-(-6)$$

Write each English phrase as an algebraic expression. Let x represent the number:

1. The difference between 9 times a number and -4 times a number

2. The quotient of -7 and a number subtracted from the quotient of -12 and a number

THE PRODUCT OF TWO REAL NUMBERS

 π The _____ of two real numbers with _____ signs is

found by _____ their ____ values. The

product is ______.

 π The _____ of two real numbers with the _____ sign is

found by _____ their ____ values. The

product is ______.

 π The _____ of zero and any real number is _____.

Example 1: Multiply.

$$1. -15(5)$$

$$(-11)(-12)$$

4.
$$\frac{4}{3} \cdot 0$$

MULTIPLYING MORE THAN TWO NUMBERS

1. Assuming that no factor is zero,

 π The _____ of an ____ number of ____

numbers is ______.

 π The _____ of an ____ number of ____

numbers is ______.

2. If any _____ is ____, the product is ____.

Example 2: Multiply.

1.
$$-7(5)(-6) \cdot 2$$

2.
$$(13)(-1)\left(-\frac{5}{2}\right)(-8)$$

THE MEANING OF DIVISION

The result of ______ the real number ____ by the nonzero real number ____ is called the _____ of ____ and ____. We can write this _____ as ____ or ____. We can define division in terms of _____ by using _____ inverse or

Example 3: Find the multiplicative inverse of each number.

- 1. 12
- 2. $-\frac{1}{4}$
- 3. $-\frac{7}{8}$

DEFINITION OF DIVISION

If a and b are real numbers and b is not equal to zero, then the ______
of ____ and ____ is defined as

The _____ of two real numbers is the ____ of the ____ of the ____ of the ____ of the ____ number and the ____ of the ____ number.

Example 4: Divide using the definition of division.

1.
$$5 \div \frac{1}{5}$$

2.
$$\frac{-123}{-3}$$

THE QUOTIENT OF TWO REAL NUMBERS

 π The _____ of two real numbers with _____ signs is

found by _____ values. The

quotient is ______.

 π The _____ of two real numbers with the _____ sign is

found by _____ values. The

quotient is ______.

 π Division of any real number by _____ is _____.

 π Any nonzero number divided into _____ is _____.

Example 5: Divide.

3.
$$-\frac{2}{5} \div \frac{1}{10}$$

5.
$$\frac{123}{-3}$$

4.
$$\frac{0}{123}$$

6.
$$-1.8 \div (-0.6)$$

ADDITIONAL PROPERTIES OF MULTIPLICATION

PROPERTY	MEANING	EXAMPLES
IDENTITY PROPERTY OF MULTIPLICATION		
INVERSE PROPERTY OF MULTIPLICATION		
MULTIPLICATION PROPERTY OF -1		
DOUBLE NEGATIVE PROPERTY		

NEGATIVE SIGNS AND PARENTHESIS

If a ______ sign precedes parentheses, _____ the parentheses and _____ the ____ of _____ within the parentheses.

Example 6: Simplify.

1.
$$-4(-3x+2)$$

2.
$$5(3y-1)-(14y-2)$$

APPLICATIONS

Use the formula $C = \frac{5}{9}(F - 32)$ to express each Fahrenheit temperature, F, as its equivalent Celsius temperature, C.

1.
$$-13^{\circ}$$
 F