Section 1.7: MULTIPLICATION AND DIVISION OF REAL NUMBERS When you are done with your homework you should be able to... - π Multiply real numbers - π Multiply more than two real numbers - π Find multiplicative inverses - π Use the definition of division - π Divide real numbers - π Simplify algebraic expressions involving multiplication - π Determine whether a number is a solution of an equation - π Use mathematical models involving multiplication and division #### WARM-UP: Find the value of each expression: 1. $$\frac{9}{10} - \left(\frac{1}{4} - \frac{7}{10}\right)$$ 2. $$-|-8-(-2)|-(-6)$$ Write each English phrase as an algebraic expression. Let x represent the number: 1. The difference between 9 times a number and -4 times a number 2. The quotient of -7 and a number subtracted from the quotient of -12 and a number ## THE PRODUCT OF TWO REAL NUMBERS π The _____ of two real numbers with _____ signs is found by _____ their ____ values. The product is ______. π The _____ of two real numbers with the _____ sign is found by _____ their ____ values. The product is ______. π The _____ of zero and any real number is _____. Example 1: Multiply. $$1. -15(5)$$ $$(-11)(-12)$$ 4. $$\frac{4}{3} \cdot 0$$ ## MULTIPLYING MORE THAN TWO NUMBERS 1. Assuming that no factor is zero, π The _____ of an ____ number of ____ numbers is ______. π The _____ of an ____ number of ____ numbers is ______. 2. If any _____ is ____, the product is ____. Example 2: Multiply. 1. $$-7(5)(-6) \cdot 2$$ 2. $$(13)(-1)\left(-\frac{5}{2}\right)(-8)$$ ## THE MEANING OF DIVISION The result of ______ the real number ____ by the nonzero real number ____ is called the _____ of ____ and ____. We can write this _____ as ____ or ____. We can define division in terms of _____ by using _____ inverse or Example 3: Find the multiplicative inverse of each number. - 1. 12 - 2. $-\frac{1}{4}$ - 3. $-\frac{7}{8}$ #### DEFINITION OF DIVISION If a and b are real numbers and b is not equal to zero, then the ______ of ____ and ____ is defined as The _____ of two real numbers is the ____ of the ____ of the ____ of the ____ of the ____ number and the ____ of the ____ number. Example 4: Divide using the definition of division. 1. $$5 \div \frac{1}{5}$$ 2. $$\frac{-123}{-3}$$ # THE QUOTIENT OF TWO REAL NUMBERS π The _____ of two real numbers with _____ signs is found by _____ values. The quotient is ______. π The _____ of two real numbers with the _____ sign is found by _____ values. The quotient is ______. π Division of any real number by _____ is _____. π Any nonzero number divided into _____ is _____. Example 5: Divide. 3. $$-\frac{2}{5} \div \frac{1}{10}$$ 5. $$\frac{123}{-3}$$ 4. $$\frac{0}{123}$$ 6. $$-1.8 \div (-0.6)$$ # ADDITIONAL PROPERTIES OF MULTIPLICATION | PROPERTY | MEANING | EXAMPLES | |-------------------------------------|---------|----------| | IDENTITY PROPERTY OF MULTIPLICATION | | | | INVERSE PROPERTY OF MULTIPLICATION | | | | MULTIPLICATION
PROPERTY OF -1 | | | | DOUBLE
NEGATIVE
PROPERTY | | | ## NEGATIVE SIGNS AND PARENTHESIS If a ______ sign precedes parentheses, _____ the parentheses and _____ the ____ of _____ within the parentheses. Example 6: Simplify. 1. $$-4(-3x+2)$$ 2. $$5(3y-1)-(14y-2)$$ # **APPLICATIONS** Use the formula $C = \frac{5}{9}(F - 32)$ to express each Fahrenheit temperature, F, as its equivalent Celsius temperature, C. 1. $$-13^{\circ}$$ F